
Getting to Use MiPal’s MiEditLLFSM

Vladimir Estivill-Castro
Machine Intelligence and Pattern Analysis Laboratory

Griffith University, Institute for Integrated and Intelligent Systems

June 16, 2014

Abstract

This document provides an introduction to the editor MiEditLLFSM. This is an editor of logic-labeled
finite state machines. These machines can be compiled and executed with the MiPal tool clfsm. Logic-
labeled finite-state machines are models of computation derived from state charts. The computation
progresses from state to state when transitions fire. Transitions are logic expressions, while states have
executable code in three sections OnEntry, OnExit and Internal.

Contents
1 Introduction 2

2 The Hello World LLFSMs 3
2.1 Entering code . 3
2.2 Opening an existing machine . 4

3 A first execution, and include files 4
3.1 Adding another state . 5
3.2 Transitions . 5
3.3 Editing a transition . 6

4 Variables 6

5 Concurrency model 6

6 Arrangements of machines 6

7 An example with Webots 7
7.1 Machine that follows a line . 9

7.1.1 Obtaining the maximum speed and the camera width 12
7.1.2 Obtaining the difference of desired system-state and current system-state and issuing

a proportional correction . 12
7.1.3 Sending the motors their new speed . 13

7.2 Machine to control the line follower — an arrangement of machines 13
7.2.1 The SUSPEND state . 14
7.2.2 Testing if a machine is running . 15

7.3 The DriverForFollower LLFSM . 15

8 A behavior to avoid obstacles on the Nao humanoid robot 17
8.1 The walk about behavior . 19
8.2 A machine to post to the whiteboard from the chest button of the Nao 24
8.3 A super-machine to regulate when to run the get up behavior 27
8.4 The FallManager machine . 28

1

http://www.cyberbotics.com

8.5 The machine to determine the orientation of the robot . 28
8.6 The machine to get up . 29

9 Further work 30

1 Introduction
MiEditLLFSM was developed in java using NetBeans IDE 7.4. It should execute with java 1,6 or
higher. This document provides an introduction to the editor MiEditLLFSM. This is an editor of of logic-
labeled finite state machines (LLFSMs). These machines can be compiled and executed with the MiPal
tool clfsm. Logic-labeled finite-state machines are models of computation derived from state charts. The
computation progresses from state to state when transitions fire. Transitions are logic expressions, while
states have executable code in three sections OnEntry, OnExit and Internal. FSMs are a very useful
instrument to describe the behavior of an automata. They can also be illustrated as state-diagrams. Here,
we describe the approach of the MiPal team for FSMs.

The FSMs of the MiPal team closely follow UML 2 and Harel’s state-charts while taking into consid-
eration many widely used approaches. Historically, the almost de-facto standard for FSMs is derived from
the STATEMATE model and tool [12, 11] but there have been many alternative proposals [23]. There are
several commercial products including QP

TM
[21], BotStudio [19] StateWORKS [24] and MathWorks R© State-

Flow. The robotics standard ROS has a tool named smach (see: http://wiki.ros.org/smach). The UML
form of FSMs derives from OMT [20, Chapter 5], and the MDD initiatives of Executable UML [17].

MiPal state machines are also in close proximity with the mathematical model of behavior, the so called
finite-state automata [14] that produce output, also known as transducers. That is, our FSMs consist of a set
S of states, and a transition function T : S×E → S. There is a distinguished state s0 ∈ S, named the initial
state. Typically, the set E is a set of events, or a set of input symbols, but in the case of MiEditLLFSM
this is a set of Boolean expressions1

MiPal’s FSMs will be of a synchronous type. The set E are expressions. Moreover, T is usually a partial
function, that is, there are pairs (si, et) for which T is not defined; so, T is usually called the transition
table. The standard general description of the semantics for T (si, et) = sj is that when the machine is in
state si ∈ S and if the expression et evaluates to true, the machine will move to the state sj . However, this
requires that, (for any t 6= s), if T (si, et) and T (si, es) are defined and T (si, et) 6= T (si, es), then et and es
never be true simultaneously (unless one is modeling completely non-deterministic behavior).

We simplify the burden for the behavior designer by making the projection of T on each state a sequence
instead. That is, T (si, et) = sj will cause a transition to state sj if et evaluates to true and no previous
expression es evaluates to true (∀s < t in the sequence T (si, ·)). Note that while this is simply syntactic
sugar, it does make the task of the behavior designer a lot simpler. Thus, in MiEditLLFSM, each states
has associated with it a sequence of pairs (es, si) denoting the transitions out of the state. The state si is
the target state when es evaluates to true.

The enforcement that all transitions out of a state be in sequence avoids some problems that emerge
with other languages. In UML 2, and other FSMs languages that enable guard conditions, a need appears
to recommend best practices [15], where the exclusive disjunction of all guard conditions out of a state shall
always be true. Also, in UML 2 and STATEMATE, two transitions from a single state that evaluate to
true represents a conflict and an invalid configuration.This is not a concern in MiPal’s modeling language.
Expressions out of a state form a list (in Fig. 1 we have indicated this by a sequence numeral) and thus, the
second expressions can be seen as the conjunction with the negation of the first. MathWorks R©, StateFlow
with SymLink concurs with MiPal’s approach and specifies a sequential evaluation of only one event at a
time and a mechanism to specify priorities in transitions but its larger set of primitives and its semantics
requires complex translations for performing model-checking [1].

1In fact, it would be desirable that a transition be labeled by any call (local,remote) to an agent/code that returns a
Boolean value and that LLFSMs be generic with respect to the language that once evaluated determines a Boolean value for
the expression labeling the transition. For example, in many case studies MiPal has used Defeasible Logic (DPL) [2], this
is common sense logic. This is an aspect that characterizes MiPal’s FSMs; as we mentioned earlier. This is very useful for
declarative aspects, for example, we have used models of logic to express what is the off-side rule in soccer [3], when it is
dangerous for a senior lady to face a stranger [3], and to describe hands of poker [4]. That is, logic becomes a very useful tool
for communicating what criteria classify a soccer player’s position as valid, or a set of 5 cards as a full-house.

2

http://wiki.ros.org/smach

state 1

OnEntry { }

OnExit { }

{ }

state 2

OnEntry { }

OnExit { }

{ }

expression_1

expression_2

expression_3

Figure 1: Basic elements of the notation.

In a FSM, each state models a period in time where an action2 takes place. However, there are three
sections where actions are grouped. An OnEntry section is executed upon arrival to the state, while actions
in the OnExit section are executed as the machine departs that state. Thus, the actions in these two
sections are executed once and only once (and of course upon arrival and upon departure, respectively, in
the corresponding state). The third section is a section for internal actions3 that are executed only if none
of the transitions fires. When the internal actions are completed, execution returns to evaluate the sequence
of expressions that label transitions out of the state and the cycle is repeated. We refer to one pass over the
cycle as a ringlet.

2 The Hello World LLFSMs
We now construct the very first LLFSM and run it. Simply start the MiEditLLFSM; you can double click
or in a terminal window with java installed and configured type the following command.

java -jar MiEditLLFSM

You should get a screen that looks as in Fig. 2. We will now use the editor to create a new machine. In the
menu bar File chose the New option and use the file chooser to navigate to a directory where you will create
a LLFSM. Each machine is physically stored in a directory with extension .machine. In fact, a LLFSMs for
MiEditLLFSM and for clfsm are directories with extension .machine.

So, when you are satisfied with the location of the new LLFSM hit the Open button and you will be
queried for the name of the new machine. Type HelloWorld and hit the OK button. Many buttons and panels
of MiEditLLFSM will become active as a machine with one state has been created. The state is named
INITIAL, and it is also the current state. The INITIAL state is where execution starts. In MiEditLLFSM
you can edit only one machine at a time and only one state of that machine. That is called the current state.

The name of the machine you are currently editing should appear on the right top corner of the main
screen of MiEditLLFSM and a little to the left of it, you will also see the name of the initial state.

2.1 Entering code
Click the first large section labeled OnEntry. You are free to enter any text in any formatting that you
wish here. LLFSMs are meant to be as language agnostic as possible. Enter the following code.

fprintf(stderr,"STATE: %s\n",state_name());

Now, go to the States menu and chose the Save option. In MiEditLLFSM changes to a LLFSM are not
saved unless you explicitly use the Save option in the States menu. After saving, you should also go to the
File menu and chose the Exit option. This terminates MiEditLLFSM.

Note: the File menu, Save is completely equivalent to the. using Save in the States menu.
2 We make no distinction between actions and activities, and more on this will be discussed later.
3In UML known as the do section.

3

Figure 2: The initial and main screen of MiEditLLFSM.

2.2 Opening an existing machine
Open MiEditLLFSM and in the File menu select the option Open. Navigate until you can select again
the HelloWorld machine. Once selected, hit Open and the previous disabled buttons will become active on
MiEditLLFSM. Also, the OnEntry section should have the text of your previous section. In the OnExit
section add the following code.

fprintf(stdout,"Hello\n");

Do not forget to go to the State menu and to use the menu item Save to save this change.

3 A first execution, and include files
You could potentially think you can execute this simple machine that you created. We assume you have in-
stalled clfsm. Lets assume that $CLFSM_HOME is the path to the clfsm executable and that $CLFSM_INCLUDE
is the path to the clfsm includes. You can test $CLFSM_HOME by typing on your shell prompt the following.

$CLFSM_HOME/clfsm

The clfsm runs without any output. To test $CLFSM_INCLUDE, type

ls $CLFSM_INCLUDE

You should see the file CLMachine.h among a list of files that start with CLAction.h.
Thus running the HelloWorld machine just need the command

$CLFSM_HOME/clfsm -I$CLFSM_INCLUDE HelloWorld

This will attempt to compile the LLFSM˙HelloWorld. You should get an error of the form

error: use of undeclared identifier ’stderr’

4

This is because MiEditLLFSM is agnostic to any language. We need to place proper include files. To
place include files for the entire machine, click on the INCLUDES button. A new free text editing box appears
labeled Machine INCLUDE file. Type

#include <stdio.h>

Make sure that you do not leave any blank-space characters between the sharp sign # and the start f a line.
Hit the SAVE button to close the free text input and then try to run th machine again. This time the error
would be of the form

error: use of undeclared identifier ’state_name’

There is two solutions to this. One is to remove the code from the OnEntry section. If you do this, your
machine shall run; however, we recommend you leave something to print on the OnEntry as the OnExit
will not be executed since there are no transitions that fire.

The second solution is to actually include the file named CLMacros.h among the includes of the machine.
This is because state_name() is part of the clfsm infrastructure. If you tried the first solution and your
machine ran, and then you edit it to carry out the second solution, nothing may happened. This is because
clfsm does not recompile. You need to remove the corresponding directory. On Mac-OS this usually requires
you to do the following

rm -fr HelloWorld.machine/Darwin-x86_64

Implement the second solution by adding the line

#include "CLMacros.h"

using the Includes button and the free text box for Machine INCLUDE file (again, we emphasize that you
should not leave any blank-space characters between the sharp sign # and the start of a line). Now, when
you run the machine you should get in the output the name of the current state.

3.1 Adding another state
You can add a new state by going to the State menu and selecting the Add menu item. A box will query
you for the name of the new state, Type SECOND. This will become the current state in MiEditLLFSM. On
the OnEntry section type again

fprintf(stderr,"STATE: %s\n",state_name());

while in the OnExit section type

fprintf(stdout,"World\n");

3.2 Transitions
Now we will add two transitions. First, from the INITIAL state to the SECOND state. Go to the Transitions
menu and select the menu item Add. Since the current state is SECOND, let the target state be the default,
namely the INITIAL state. Click the OK button in the “Selecting a destination for the transition” and you
will be asked to enter a Boolean expression. leave the default expression (the value true).

Now we add a transition from INITIAL to SECOND. For this, we make the current editing state the initial
state by clicking on the STATES button on the top right corner of the GUI. A box allows you to select a
state, so chose INITIAL. You will see that the OnExit has changed to printing Hello to the stdout. Now,
again, in the Transitions menu select the Add option. Change the default expression to

after(1)

This is a clfsm macro that waits for a second. That is, it evaluates to true once a second has passed. Save
the state and execute this machine. You should see the output of each of the states after one second.

5

3.3 Editing a transition
Lets change the delay from one second to two seconds. For this, click the top button called TRANSITIONS.
A list of all transitions out of the current state will appear. In fact is a list of pairs (target state, expression).
This is because the expression could potentially be duplicated with a different target state; and also, there
could be two transitions to the same target state but with different expression. At the moment there is
only one (target state, expression) pair, so simply click the OK and a window that allows you to edit the
corresponding expression will appear. Edit the expression to after(2) and click OK. A warning will appear
reminding you that, for this change to have effect, the current state must be saved. Save the state as before
and run the machine. Convince yourself you can edit transitions in both directions and to different delay
values.

4 Variables
Because our models consist of arrangements of FSMs, variables used in each of the sections above are of 3
types. The first type, local variables, are exclusive to one and only one FSM (that is their scope is only
the states of one FSM). Internal variables are shared by all the FSMs in the arrangement (that is, their
scope is all the states of the FSMs in the arrangement). Finally, external variables are variables whose
scope goes even beyond the arrangement of the FSMs and in embedded system are variables that are set by
external sensors or are set to activate effectors and actuators. The environment that holds the variables is
named the whiteboard [13], but it also correspond to the software architecture pattern of a repository [22].

5 Concurrency model
By design, in one ringlet execution there is only one read operation by which a local copy of external
and internal variables in the scope of the current FSMs is made before the execution of any section or the
evaluation of any expression labeling any transition. That is, all execution in a ringlet is in the same context
that is not modified by any other concurrent FSM or any external event (a new sensor reading, for example).
If no transition fires and the internal actions complete, when a new ringlet commences, a new read of the
external scope will take place. All writes of external or internal variables by a FSM take place immediately
in the shared context. Our choice to place only one read instance of the variables per ringlet may seem to
contradict the STATEMATE “execution time” requirement that suggest changes in any point in time should
be reflected in the next. However, this creates serious problems in robotics applications where there is an
open environment [15], and languages like rFSM also take an approach to evaluate the set of transitions out
of a state in the same context.

6 Arrangements of machines
The arrangement of FSMs is executed by a round-robin switch from one ringlet of one FSMs to the next one
in the arrangement. Thus, the arrangement of FSMs is a single sequential execution, executed by one thread
that interprets the semantics described above. It is possible also to indicate a relative frequency for each
FSMs enabling different rates of progress which are implemented by each FSMs having a certain number of
ringlets performed before passing the execution token to the next FSM in the arrangement. Note that this
style of execution is very much in line with the time-triggered architecture [16] (as opposed, as we mentioned
earlier, to an event-driven architecture).

The use of a single-tread execution for the several FSMs in the arrangement, as opposed to the paral-
lelization by a semantics that just specifies concurrency (that is arbitrary rate of progress for each, as each
is executed within an independent thread) brings several advantages. It has been argued that from the design
point of view, open concurrency (where the management of switches between threads is left to the system)
represents an unnecessary cognitive load in the model designer [6] as it opens all sorts of needs for communi-
cation, synchronization and consideration of communication delays. There is added complexity in ensuring
properties like fairness, management of critical sections, no deadlock, and extermination of starvation. It is
also the case that the execution (that is implementation) is usually less efficient as the concurrency control

6

Figure 3: Window to declare variables at the scope of the machine.

mechanisms consume CPU cycles and may need to manage context switches and communication primitives
with native support from the operating system or the hardware. Perhaps more important is the actual
formal verification that the models are correct. Model-checking of models that enable concurrent threads
must consider a universe of all possible states of the system and such universe is the Cartesian product of all
possible states of each thread. This combinatorial explosion significantly complicates the formal verification
of such system. For robotic systems and embedded systems where there may be several timing requirements,
sequential execution has been proposed as superior to the multiplication of threads [18].

By using sequential scheduling we maintain concurrency, and the models produced with the logic-labeled
FSMs can be verified using public domain model-checking technology (NuSMV) within a matter of seconds [9,
8], while for the same case studies, but using Behavior Trees [25] – which have explicit notation for spawning
parallel threads – require several days of CPU to verify equivalent properties [10].

It is important to note that the approach presented here is not a departure from the event model of
traditional FSMs. In fact, the ability of our FSMs to use statements in a decidable common-sense logic
allows for a more complex event definition with clear value and temporal semantics [5]. Sensors that trigger
events in an embedded system simply swap a state variable. Such variable is an external status variable, of
which a snapshot is taken at the time the token arrives to the machine that evaluates a condition (transition)
to the state of the sensor reading.

7 An example with Webots

In this section we will use our editor to create a behavior in a small differential robot named ePuck in
the simulator Webots. We will also use the MiPal object-oriented whiteboard and the bridge between the
MiPal object-oriented whiteboard and Webots.

We will start by creating a very simple one-state machine to check that all the infrastructure you need is
in place. Look at MiPal Getting Started document to set up the MiPal object-oriented whiteboard. Follow
the standard installation document of Webots as well.

Start MiEditLLFSM and create a new machine. Lets called MoveForward. Recall you do this by
selecting the menu item File and choosing the New option. Then, you use the file chooser to navigate to
a directory where you will create a LLFSM. Select the directory and a dialog will appear where you enter
MoveForward.

After the machine has been created, many more buttons become enabled. Chose the VARIABLES button
and a dialog with 3 columns shall appear (the aim is to get it to look like Figure 3). In the first column
type int (as we will be declaring a C++ integer variable. In the second column type robotID and as a third
column you can enter any string as a comment. Type the robot ID for Webots. Unfortunately the dialog
requires you to chose another cell before you close this dialog for the changes to be reflected. So, chose
another cell and then click on the CLICK IN ANOTHER CELL AFTER EDITING AND THEN SAVE HERE.

This has created an external variable with the scope of all states of the machine. Now, click the Includes.
In the dialog type the following text.

#include <stdio.h>
#include "CLMacros.h"

7

http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com

#include "typeClassDefs/WEBOTS_NXT_bridge.h"
#include "CLWhiteboard.h"
using namespace guWhiteboard;
#define DEBUG

Because we will use fprintf() we include

#include <stdio.h>

.
Because we will use state_name() we include

#include "CLMacros.h"

Because we will use MiPal’s Webots bridge we include

#include "typeClassDefs/WEBOTS_NXT_bridge.h"

Because we will use the handlers of MiPal’s object oriented whiteboard, we include

#include "CLWhiteboard.h"

Because we can refer more easily to names from the bridge in the namespace of the MiPal whiteboard
we include

using namespace guWhiteboard;

Finally, since we may want to turn of debugging output we can use the preprocessor directive

#define DEBUG

Now we are in a position to enter the code of the OnEntry section for the initial state. Type

#ifdef DEBUG
fprintf(stderr,"STATE: %s\n",state_name());
#endif

robotID=0;

// START the motors
WEBOTS_NXT_bridge thetMotorCommand(robotID,MOVE_MOTORS, 50, 50,false);
a_Command_Handler.set(thetMotorCommand);

Do not forget to go to the menu item States and Save this state.
This code of the OnEntry section will print the name of the state if the debug flag is enabled. Initialize

the external variable robotID and use the bridge to start the motors at speed. Before you continue, rename
the initial state to START. You do this by editing the text field besides the CurrentState label.

You can not edit the name of the initial state in the text field for the initial state. You must make it the
current state first.

We are almost ready to run this machine. Go back to the VARIABLES and add the variable

WEBOTS_NXT_bridge_t a_Command_Handler

This variable is used to place the motor command using the MiPal Object-Oriented whiteboard.
The compiler inside clfsm needs some paths to find the corresponding code for the MiPal white-

board as well as for the bridge. Because we are using the MiPal whiteboard and also the current MiPal
WEBOTS_NXT_bridge, you need to install this components. You may not need to install all the tools described
in the MiPal Getting Started document. However, you certainly need to set up the environment variable
GUNAO_DIR. Click on the DIRECTORIES and enter the following paths.

8

http://www.cyberbotics.com

Figure 4: The one state in MiEditLLFSM that sets the e-Puck going.

$GUNAO_DIR/posix/gusimplewhiteboard/typeClassDefs
$GUNAO_DIR/posix/gufsm/clfsm
$GUNAO_DIR/posix/gusimplewhiteboard
$GUNAO_DIR/Common

Then click the SAVE button.
Now, you can go to the directory and run this machine.

$CLFSM_HOME/clfsm -I$CLFSM_INCLUDE MOVE_FORWARD1.machine

You should see the machine being compiled, executed and then print

STATE: START

How to check that it actually starts an e-puck inside Webots running? You need to compile the bridge and
place it as a controller in a Webots world. See the document MiPal Webots Modules document. Typically,
you revert the world in Webots, that load the bridge as a controller and starts the simulation. Then, with
the simulation running you also execute

$CLFSM_HOME/clfsm -I$CLFSM_INCLUDE MOVE_FORWARD1.machine

The e-Puck will run away. Stop th simulation since the one-state machine will not stop this e-Puck as it has
exited. Fig. 4 displays the one state machine that has this simple behavior.

7.1 Machine that follows a line
We now demonstrate a few more features of clfsm, the MiPal whiteboard and the bridge by showing an
example of a LLFSM where the robot follows a line. It is also an example of feedback loop control. If the
robot gets an image that indicates the line is to the right of its trajectory, it will accelerate the motor in the
right wheel and slow down the motor in the left wheel proportional to the absolute value of the difference
between the color-pixels median and the straight direction of movement.

So, we need to create a new machine. Lets call it EpuckFollowsLine. In the initial state, the machine
will do some initialization. So, place the following code in the OnEntry section of the initial state4.

#ifdef DEBUG
std::string stateName("STATE: "); stateName+=state_name(); print_ptr(stateName);
#endif
robotID=0;

4The current WEBOTS_NXT_bridge interface does not match the new MiPal whiteboard model, where there is no queuing of
messages of the same type posted immediately after each other, so figures that show we stop the motors as well in this state
are not correct anymore.

9

http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com

speedToUse=200;
leftSpeed=0; rightSpeed=0;
cameraWidth=0;
delta=0; maxSpeed=0.0;
//Follow magenta
theChannel=GREEN_CHANNEL;
//Follow blue
theChannel=RED_CHANNEL;
//Follow yellow
theChannel=BLUE_CHANNEL;
WEBOTS_NXT_bridge a_Command(robotID,CAMERA,theChannel,1);
a_Command_Handler.set(a_Command);

This code needs some variables to be declared. So click on the VARIABLES and introduce the following
declarations.

Print_t print_ptr To display in whiteboard
int robotID The ePuck id
WEBOTS_NXT_bridge_t a_Command_Handler to place Webots-bridge commands in the whiteboard
int speedToUse the usual speed
int rightSpeed right wheel speed
int leftSpeed left wheel speed
int cameraWidth the ePuck camera width
CAMERA_E_PUCK_CHANNELS theChannel to select the color
float maxSpeed ePuck maximum speed
int delta difference between input and output signal

So, with the variable declarations we can explain the earlier code for the OnEntry section of the initial
state. The section around the #ifdef DEBUG will display the name of the state being executed as it runs the
OnEntry section in the whiteboard. You can monitor this by running MiPal’s whiteboard monitor (the
option -v o clfsm achieves something similar, showing the state names as they re executed, more on this
later).

The variable robotID determines which robot the messages are for in Webots by the bridge. The
speedToUse is the recommended speed in an example for this in a tutorial by Webots. The leftSpeed
and rightSpeed would correspond to the speeds of each of the wheels. The cameraWidth of the ePuck can
be obtained from the bridge, and we will need it to determine the moves.

The variable delta denotes the observer discrepancy that will provide the magnitude of the error to the
feedback-loop control. The variable maxSpeed

The ePuck and the bridge allow to have a 3 colors (channel) in the camera. The variable theChannel
will indicate which to use. In this case, the last value assigned to it is the constant BLUE_CHANNEL, which
makes yellow pixels dark and everything else white. The code

WEBOTS_NXT_bridge a_Command(robotID,CAMERA,theChannel,1);
a_Command_Handler.set(a_Command);

builds an message of the class WEBOTS_NXT_bridge. This message sets the camera of the given robotID to
use the color channel in theChannel.

The last bit of code builds a WEBOTS_NXT_bridge message as a instruction (or command) to the ePuck
and the command is MOVE_MOTORS. because the left speed is set to zero and so is the right speed this stops
the motors. The instruction a_Command_Handler.set(a_Command); is what actually places the message in
the whiteboard. The last parameter of the constructor in WEBOTS_NXT_bridge messages usually indicates
whether the message is the e-Puck to the outside (in this case set to true) or from the outside to the ePuck
(then, set to false. Thus an instruction to move to motors is from the outside to the ePuck an the last
parameter is false. If it is a command about the values of the camera will be read (about a sensor), then
is set to true.

Because MiEditLLFSM/ does not have syntax-checking, it is a good idea to not to write to many states
until you are sure you have typed the variables correctly. But before you compile even a machine with only
one state, recall you need to set up the includes. Click on the button INCLUDES and type the following.

10

http://www.cyberbotics.com
http://www.cyberbotics.com

#include "CLMacros.h"
#include "typeClassDefs/WEBOTS_NXT_bridge.h"
#include "CLWhiteboard.h"
using namespace std;
using namespace guWhiteboard;
#define DEBUG

The CLMacros enable functions like state_name(), while #include "typeClassDefs/WEBOTS_NXT_bridge.h"
enables MiPal’s Webots-bridge. You need #include "CLWhiteboard.h" to use the MiPal’s whiteboard. The
other are namespace declarations that save typing string instead of std::string. The DEBUG flag enables
the code that is between the #ifdef . . . #endif.

And also you need the path directories used in compilation. So, click on the button DIRECTORIES and
input the following.

$GUNAO_DIR/posix/gusimplewhiteboard/typeClassDefs
$GUNAO_DIR/posix/gufsm/clfsm
$GUNAO_DIR/posix/gusimplewhiteboard
$GUNAO_DIR/Common

Make sure you do not leave any blank-space characters before the actual path and the start of the line.
Moreover, please note that these paths are dependent on installing the MiPal whiteboard and clfsm as per
the MiPal GettingStarted.pdf document.

To check that all you have built works so far execute the machine with the following command.

$CLFSM_HOME/clfsm -v -I$CLFSM_INCLUDE EpuckFollowsLine.machine

If you have no errors, compilation will complete and the machine will run. Do not forget the -v option and
then, the output will be something like

m 0 s 0 - EpuckFollowsLine.machine - INITIAL

The program clfsm would then terminate. If you are running the guWhiteboardMonitor you should see
output similar to this.

Type: Print Value: STATE: INITIAL
Type: PlayerNumber Value: 2
Type: WEBOTS_NXT_bridge Value: 0,CAMERA,0,1,

Make sure you understand how these 3 messages ended up in the whiteboard.
Now, rename the initial state to TURN_CAMERA_ON. Do you see when we instruct the ePuck to start

reporting from the camera?
After that, we going to add another state. So, in the menu for State chose the option Add and create a

new state named TURN_ON_ENCODERS. Although the clfsm -v option is very convenient, paste the following
code in the OnEntry section of this new state.

#ifdef DEBUG
std::string stateName("STATE: "); stateName+=state_name(); print_ptr(stateName);
#endif

Also, we put something useful.

WEBOTS_NXT_bridge commandLeft(robotID,ROTATION_ENCODER,LEFT_MOTOR_DIFFERENTIAL,1);
WEBOTS_NXT_bridge commandRight(robotID,ROTATION_ENCODER,RIGHT_MOTOR_DIFFERENTIAL,1);
a_Command_Handler.set(commandLeft);
a_Command_Handler.set(commandRight);

You can interpret this two messages on the bridge as turning on the reporting on the encoders for each of
the wheels. If you now run the machine and the guWhiteboardMonitor as well as the Webots simulation,
the whiteboard will be regularly populated with reports on the values of the wheels spinning (or constant

11

http://www.cyberbotics.com
http://www.cyberbotics.com

values if the wheels are actually not moving). However, to actually test we arrive to this state we need a
transition from TURN_CAMERA_ON to TURN_ON_ENCODERS. To do this, you have to make TURN_CAMERA_ON the
current state after you saved the code you just put into TURN_ON_ENCODERS.

Once TURN_CAMERA_ON is the current state select the menu item Transitions and the option Add. The
default expression for a transition is the trivial Boolean expression true, change this to after_ms(20), this
is sufficient for messages in the MiPal whiteboard to not get overwritten by another message of the same
type posted too fast immediately afterwards. Try running the machine again. Remember that you should
remove the subdirectory where files are compiled if you require re-compilation. In Mac-OS it the subdirectory
staring with Darwin.

You should now see that the machine goes trough 2 states before exiting, but if you are running the
Webots simulator, many messages will be posted and continue to be posted even the machine has exited?
Why? Well the bridge was left in a state of reporting the encoders and while the simulation is running this
will happen. The encoders must be on to learn the maximum speed, because in the message of the encoder
values the maximum speed is also provided.

7.1.1 Obtaining the maximum speed and the camera width

We will now add one more state. Lets call it GET_MAX_SPEED_AND_CAMERA_WIDTH. In the OnEntry section
of this state we enter the following code.

#ifdef DEBUG
std::string stateName("STATE: "); stateName+=state_name(); print_ptr(stateName);
#endif
WEBOTS_NXT_encoders_t encoder_data_ptr;
maxSpeed=M_PI * (encoder_data_ptr.get()).maxSpeed();
#ifdef DEBUG
fprintf(stderr,"maxSpeed Read %f\n",maxSpeed);
#endif

In the OnExit section we will turn off the encoders as they re not needed any more.

WEBOTS_NXT_bridge commandLeft(robotID,ROTATION_ENCODER,LEFT_MOTOR_DIFFERENTIAL,0);
WEBOTS_NXT_bridge commandRight(robotID,ROTATION_ENCODER,RIGHT_MOTOR_DIFFERENTIAL,0);
a_Command_Handler.set(commandLeft);
a_Command_Handler.set(commandRight); WEBOTS_NXT_camera_t camera_data_ptr; //the Width

We need a transition to reach this state. So go back to TURN_ON_ENCODERS and make a transition to
GET_MAX_SPEED_AND_CAMERA_WIDTH. Instead of just leaving the default true change it to after_ms(30).
This 20ms delay ensures the signal about the encoders is processed and forwarded in the whiteboard.

7.1.2 Obtaining the difference of desired system-state and current system-state and issuing
a proportional correction

Now we create the finite-machine state where we read the image and calculate the error. That is, we calculate
the displacement away from the desired line. So, create a new state called FEEDBACK_CONTROL. Here,
we will collect the center of mass of the pixels of the color we are following, and then in the variable delta
we obtain the signed magnitude of error from such center being at the center of the camera. Then, we set
speeds for the motors accordingly. The code of the OnEntry section in this new state is as follows:

#ifdef DEBUG
std::string stateName("STATE: "); stateName+=state_name(); print_ptr(stateName);
#endif
WEBOTS_NXT_camera_t camera_data_ptr;
// the WIDTH is a property of the camera across all channels
// WEBOTS_NXT_camera theActualCameraObject = camera_data_ptr.get();
cameraWidth = (camera_data_ptr.get()).width() ;
// second parameter of a Camera Channel is the value of the middle point
// delta is the error to the desired state, as a feedback loop control model

12

http://www.cyberbotics.com

Figure 5: The transitions and states so far.

delta = ((camera_data_ptr.get()).get_channel(theChannel)).secondParameter() -cameraWidth/2;
// set the speeds
leftSpeed= speedToUse -4*abs(delta)+4*delta;
rightSpeed=speedToUse -4*abs(delta)-4*delta;

Again, we need a transition to arrive to this state. Go back to the earlier state
GET_MAX_SPEED_AND_CAMERA_WIDTH. Add a transition also with expression after_ms(30). We
now have a sequence of transition as per Figure 5.

7.1.3 Sending the motors their new speed

Now we actually add the loop of the famous Feedback loop control. We add a new state SET_MOTORS_SPEED.
So, add this state as usual, and place the following code in the OnEntry section.

#ifdef DEBUG
std::string stateName("STATE: "); stateName+=state_name(); print_ptr(stateName);
#endif
WEBOTS_NXT_bridge
thetMotorCommand(robotID,MOVE_MOTORS, leftSpeed/maxSpeed, rightSpeed/maxSpeed,false);
//post the speed
a_Command_Handler.set(thetMotorCommand);

We add two transition. Form this state to the earlier state FEEDBACK_CONTROL we put after_ms(32).
This is because the Webots controller (the MiPal guwebotsinterfacemodule) has been set to a cycle of
32ms. The transition back is now just the expression after_ms(10). Figure 6 shows this finite state ma-
chine and the Webots simulator. The simulator display the ePuck robot executing this program,a nd thus
follows a line of color. To run this machine and have this effect on the robot, you need to be running the
MiPal webotsbridge as a controller for that Webots world. You need to read the MiPal “WebotsGet-
tingStarted.pdf” document 5. The
tt WEBOTS_NXT_bridge class of the MiPal whiteboardis the one used here in the code to create objects of
the class WEBOTS_NXT_bridge that represent messages (information) back and forward between the LLFSM
and the execution of the machine in Figure 6.

7.2 Machine to control the line follower — an arrangement of machines
Complexity of behaviors can be created by composing simple LLFSM into more complicated behaviors,
and those in turn, into more complicated behaviors. Thus, clfsm can execute more that one LLFSM
concurrently, and under a sequential, predictable schedule. This is advantageous as many of the complexities
of race conditions, concurrent programming and critical section synchronization are avoided. If you provide
more than one LLFSM to clfsm, they become an arrangement. In the arrangement, the execution token is

5Under the MiPal infrastructure this usually consists of placing yourself in the directory of the guwebotsinterfacemodule.
That is $MIPAL_HOME/src/MiPal/GUNao/webots/webotsbridge. Then, you execute the following.

export WEBOTS_HOME=/Applications/Webots
make host
cp ./build.host/guwebotsinterfacemodule MiPalDifferentialEPuck/controllers/guwebotsinterfacemodule/

The MiPal environment has copied the Webots world of the colored lines and the ePuck in
$MIPAL_HOME/src/MiPal/GUNao/webots/webotsbridge/MiPalDifferentialEPuck/worlds with the name
novice_linear_camera.wbt.

13

http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com
http://www.cyberbotics.com

Figure 6: The line follower LLFSM controlling the ePuck in Webots.

given to the first machine in the arrangement to execute one ringlet. The it passes to the next one for also
just one ringlet, and so on, until it reaches the last one, who in round-robin fashion passes the execution
token to the first one. Each machine in turn is executed for one and only one ringlet. See Section 5 on
concurrency.

Thus, now we are going to create a controller machine for the previous machine. This machine will be
very simple as we just want to illustrate the construction of such hierarchy. It is very similar to the famous
subsumption architectures of Brooks [7]. The clfsm tool has the capacity to easily build this with some
techniques.

7.2.1 The SUSPEND state

For each LLFSM, it is always possible to create a designated state to park the machine. We name the state
SUSPEND, although the name of the state is not what determines if it is the state where to park the machine.
However, only one designated state of this kind can be in a machine. Similar with the initial state, there can
only be one per machine.

If a machine has this state, it also has (implicit) transitions from all of its states to this state. Automaticly,
each state has such transition evaluated as the very first transition in its sequence of outgoing transitions.
clfsm macros include the function

suspend(const string NameOfMachine)

The execution of a suspend (by another machine) enables the transition to the SUSPEND state in the named
machine. When the token of execution arrives to the machine named in the suspend, then the transition
actually fires, the current state’s OnExit section runs followed by the OnEntry section of SUSPEND.

There are also implicit transitions out of the SUSPEND state. There is a transition to the last state
executed previous the migration to the SUSPEND state. This transition is enabled by the following clfsm
macro.

resume(const string NameOfMachine)

14

http://www.cyberbotics.com

Figure 7: A machine that controls the line follower machine.

Again, when another machine executes a resume, it enables the transition back to the previous state.
The transition does not fire until the token of execution arrives to the named LLFSM. Then, the OnExit
section of the SUSPEND state is performed and the machine moves to the earlier state as its current state,
also executing the OnEntry section of the new state. Thus, the SUSPEND is like any other state, with
exactly the same semantics. While suspended, the machine will execute its Internal section when the token
of execution arrives to it.

Currently clfsm provides no checking and no implementation for hierarchical control of machine who in
turn start other machines. That is, each machine, if suspended, must explicitly suspend other sub-machines
it has executing (if that is the desirable behavior). This is usually accomplished by the machine itself issuing
suspend calls to all the machines is has set in running mode from its SUSPEND state.

When clfsm starts execution of an arrangement, all machines are running and they start in their initial
state. A suspended machine can be brought back to its initial state with the restart macro from clfsm.

restart(const string NameOfMachine)

This is completely equivalent to a restart except that the target state is not the state that took the machine
to the SUSPEND state, but the target state is the initial state.

7.2.2 Testing if a machine is running

clfsm enables also predicates to evaluate whether some machine is in its SUSPEND state or not. The
predicate

bool is_suspended(const string NameOfMachine)

can be used as part of the code, and in particular as part of a Boolean expression labeling a transition in a
machine to make decision based on whether another machine is suspended or not.

7.3 The DriverForFollower LLFSM
So, lets construct a new machine that will run the earlier line follower machine (EpuckFollowsLine) for
only a certain amount of time, just enough to perform the trip over the colored lines, and stop it at the
end. Open MiEditLLFSM and open a new machine called DriverForFollower. Our goal is to build a
machine that has for states, as per Figure 7.

Use the Directories to set the directories as follows.

15

$GUNAO_DIR/posix/gusimplewhiteboard/typeClassDefs
$GUNAO_DIR/posix/gufsm/clfsm
$GUNAO_DIR/posix/gusimplewhiteboard

And use the Includes to set the include directories for this machine as follows.

#include <iostream>
#include <stdio.h>
#include <string>
#include "CLMacros.h"
#define DEBUG

For this machine we will not require any variables. So the INITIAL state just suspends the EpuckFollowsLine
machine. Place the following code in the INITIAL of the DriverForFollower.

#ifdef DEBUG
fprintf(stderr, "STATE: %s\n", state_name());
#endif
suspend("EpuckFollowsLine");

The next state will actually restart the line follower. So, use the States menu item to add a new state,
and name it FOLLOW_LINE. This state has also a simple OnEntry section of code: it basicly restarts the
sub-machine.

#ifdef DEBUG
fprintf(stderr, "STATE: %s\n", state_name());
#endif
restart("EpuckFollowsLine");

Do not forget to save this state using the Save option of the States menu. Now, use the STATES to go
back to the INITIAL and we will add a transition from INITIAL to FOLLOW_LINE. The transition we will
add is as follows

after_ms(20) && is_suspended("EpuckFollowsLine")

The after_ms(20) ensures that we allow for the token of execution to arrive to the EpuckFollowsLine
which then goes to its SUSPEND state. And then, the controller itself will not move forward unless such
machine is indeed suspended. Now we create a third state named STOP_FOLLOWING. ItsOnEntry section
suspend the EpuckFollowsLine machine again. It is the same as the INITIAL state.

#ifdef DEBUG
fprintf(stderr, "STATE: %s\n", state_name());
#endif
suspend("EpuckFollowsLine");

Let save this state and go back to the FOLLOW_LINE state, so we can put a transition to the state just
created. Replace the default true for the following expression.

after_ms(36000)

That is, we will follow the lien for 3.6sec.
The last state will be a state with no transitions out of it. This will terminate the execution of the

DriverForFollower machine. Lets name this final state STOP. Its OnEntry section is just the debug
part.

#ifdef DEBUG
fprintf(stderr, "STATE: %s\n", state_name());
#endif

16

The transition from STOP_FOLLOWING to STOP is also the transition that allows some time for the token
of execution to arrive at the next machine in the arrangement and ensure it is suspended, before the driver
machine moves on.

after_ms(20) && is_suspended("EpuckFollowsLine")

Recall we need to go back and edit EpuckFollowsLine in order to add a SUSPEND where we will halt
the motors. The OnEntry section of the SUSPEND for EpuckFollowsLine is as follows.

// STOP the motors
WEBOTS_NXT_bridge thetMotorCommand(robotID,MOVE_MOTORS, 0, 0,false);
a_Command_Handler.set(a_Command);

So, once you have added this state, then use the Choose suspend menu item of the State to select the new
state as the suspended state.

The entire machine EpuckFollowsLine is also illustrated in Figure 8.
To test the arrangements of both machines, you need to run Webots with the guwebotsbride as the

controller in the environment with the lines of color. Then, run clfsm with both machines as parameters.
Typically, in Webots, you revert the world first. Then, you run the command

$CLFSM_HOME/clfsm DriverForFollower.machine EpuckFollowsLine.machine

You should get and effect similar to what is displayed in the MiPal classification video6 for 2014 from the
3:34 (3 mins, 14 sec) till 4:08 (4 mins, 8 sec). You will see also a more advanced project called MiCASE.
The additional features of MiCASE are

1. graphical layout of LLFSMs,

2. editing more than one LLFSM,

3. syntax checking of C++ code,

4. on-board simulation of clfsm, and

5. tracking of machine-submachine hierarchies.

8 A behavior to avoid obstacles on the Nao humanoid robot
In this section we use the MiPal infrastructure for the Nao robot to create a simple behavior that allows
the robot to walk about, and in the process avoid obstacles detected by its sonar sensors.

We will need an arrangement of machines.

• BatNaoMoves is the machine that using the sonar decides whether to walk straight or turn as it
senses an obstacle. It works in collaboration with another machine: SMButtonChest.

• SMButtonChest is a machine that reads the chest button sensor of the Nao and updates objects of
the MiPal-class NAO_States. This enables the demonstration to be operated by a person. The walk
about will start when the person presses the chest button and it is paused when the button is pressed
again. The robot kneels when the demonstration behavior is paused.

• GetUp will run the recorded motions to get up. Selecting different motions according if the robot fell
on its back or on its chest.

• RobotPosition reads the inertia sensors and also updates the MiPal-class NAO_States to indicate
a stance of the robots posture.

• FallManager ensures the posting to the whiteboard of posture information is suspended while the
recorded motion to get up is going on.

6 The MiPal 2014 classification video is at vimeo.com/mipalgu/robocup2014qual and youtu.be/cSLK5EyKtik.

17

http://www.cyberbotics.com
http://www.cyberbotics.com
http://vimeo.com/mipalgu/robocup2014qual
http://youtu.be/cSLK5EyKtik

Figure 8: The EpuckFollowsLine with its state for when suspended.

18

• BatManController is the top machine that chooses between the walk-about of BatNaoMoves
and the FallManager, on the basis of whether a fall has happened or not.

It should be possible to run a Nao just with the two machines BatNaoMoves and SMButtonChest, but
then, if the robot falls down, it cannot get up again. So, a human operator has to pick it up.

8.1 The walk about behavior
Thus, lets create a new machine called BatNaoMoves. This is accomplished by starting MiEditLLFSM:

java -jar MiEditLLFSM.jar

Use the File and select the option New. You can navigate your directories in your file system. You double-
click to go into a directory. Once you have selected a directory, you place the machine we are constructing by
clicking OK. You will be asked for the name of the machine, type BatNaoMoves. You will be positioned
in the INITIAL state of the machine.

We first complete the INCLUDES section fo the machine. These are the necessary #includes for any
functionality you are to include among the C++ code that will be placed in the executable sections of the
machine. For this machine, enter the following lines in the box that appears, and when complete, click on
SAVE (take care not to leave black-space characters between the beginning of the line and the # indicating
the pre-processor directive).

#include <iostream>
#include <stdio.h>
#include <string>
#include <cmath>
#include "CLMacros.h"
#include "CLWhiteboard.h"
#include "typeClassDefs/SENSORS_SonarSensors.h"
#include "typeClassDefs/MOTION_Interface.h"
#include "typeClassDefs/WALK_ControlStatus.h"
#include "typeClassDefs/NAO_State.h"
using namespace guWhiteboard;
#define DEBUG
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++98-compat-pedantic"

The CLMacros.h enables some functions of clfsm, like testing if a machine is suspended, or using the
function after_ms() in a transition so that a certain number of mili-seconds occurs before the transition
can fire.

The file CLWhiteboard.h enables access to the MiPal whiteboard, while the includes under typeClassDefs
are the message types (classes) for specific MiPal modules to the Alderbaran’s Nao.

We also need the paths to the directories to find such includes. For this, we need to use the DIRECTORIES
button and open where clfsm searches for compilation of the machine. This machine requires you complete
the installation of MiPal tools for the Nao (or you obtain a copy of the Linux 14.3 machine). Those
instructions let you know how to set the environment variable GUNAO_DIR. Typically, GUNAO_DIR is set with

export GUNAO_DIR=$HOME/src/MiPal/GUNao

The content of your DIRECTORIES seciton should be as follows.

$GUNAO_DIR/Common
$GUNAO_DIR/posix/gusimplewhiteboard
$GUNAO_DIR/posix/gusimplewhiteboard/typeClassDefs
$GUNAO_DIR/posix/gufsm/clfsm

The next step is to declare the variables that are global to all states of this machine. You open the
window to declare variables by clicking on the button VARIABLES. A screen that shows a matrix with 3
columns and several rows opens. You enter the type of the variable in the first column, the variable name in
the second column and you can add an optional comment in the third. Enter the following variables.

19

QSay_t say
SENSORS_SonarSensors_t sensorHandler whiteboard handler for sonar
SENSORS_SonarSensors sensorValues
MOTION_Status_t motion_status_handler
MOTION_Commands_t motion_ptr handler for motion commands
NAO_State_t nao_state_ptr handler to obtain the Nao state from the whiteboard
NAO_State nao_state message with information on button on the Nao
WALK_Command_t walk_post
int sonarRight
int sonarLeft

Now that the global element of the machine are defined, we build the machine by adding states and
contents to the states. Lets start with the OnEntry section of the INITIAL state. Place there the following
code.

#ifdef DEBUG
fprintf(stderr,"STATE: %s\n",state_name());
#endif
say("Bat Man");

This code enables to output into the console the name of the state using the clfsm macro state_name().
This is useful when debugging a machine and you want to trace the states its is going trough. The say("Bat
Man"); uses the MiPal interface to the MiPal speech module for the Nao. It is an abbreviated way of using
the handler QSay_t say so that the robot speaks the words Bat Man when reaching this state.

Now, use the Add option of the States to add the second state of this machine. We will call it START_SONAR.
Although, arrival into this state will cause the robot to get up. Place the following code in the OnEntry
section of this new state.

#ifdef DEBUG
fprintf(stderr,"STATE: %s\n",state_name());
#endif
say("Sonar values");
MOTION_Commands motion;
motion.GoToStance(Motions::Kneeling_stance, Motions::Standing_stance);
motion.set_head_stiffness(true);
motion_ptr.set(motion);

The print statement should now be familiar, it is a debugging tool for tracing the progress of the machine
along its states with output to the console. The say should not be a surprise, it enables tracking progress
as well, but usually we do not do it for every state, as machines progress trough states much faster that the
time it takes to say these messages.

The interesting aspect is the use of the MiPal interface for pre-recorded motion. We create a message-
type of the class MOTION_Commands. We set some properties of this message, like the fact that we desire a
change of stance from the Kneeling_stance to the Standing_stance. We also set the property that the
head stiffness should be high. The line motion_ptr.set(motion); actually places the command in the
whiteboard using the handler we declared in the variables earlier.

We will also place code in the Internal section of the START_SONAR. This code will read the sonar
values.

sensorValues=sensorHandler.get();
sonarLeft = int (sensorValues.sonar(Sonar::Left0));
sonarRight = int (sensorValues.sonar(Sonar::Right0));
#ifdef DEBUG
fprintf(stderr, "LEFT: %d RIGHT %d\n", sonarLeft, sonarRight);
#endif

20

This code uses the handler of the sonar declared in the machine variables and uses the get-message
mechanism to obtain a sensorValues object from the whiteboard. The values of the left sonar sensor and
the right sonar sensor are extracted using the MiPal interface for this message-type. That is, this class
has a method sonar and using the predefined constants Sonar::Left0 and Sonar::Right0, we obtain the
actual values. For debugging purposes, such values are printed to the console. This section will be executed
as long as the machine remains in this state.

We now create a third state where we actually set the robot walking forward and we keep track of the
sonar values. So, we refer to this state as WALK_ABOUT. Again, in MiEditLLFSM you add a state using
the Add option of the menu States. Then, you enter the name of the desired state.

In the OnEntry section of WALK_ABOUT you enter the following code.

#ifdef DEBUG
fprintf(stderr,"STATE: %s\n",state_name());
#endif
walk_post(WALK_Ready);
protected_msleep(15);
walk_post(WALK_ControlStatus(WALK_Run, 35, 0, 0, 5));
sensorValues=sensorHandler.get();
sonarLeft = int (sensorValues.sonar(Sonar::Left0));
sonarRight = int (sensorValues.sonar(Sonar::Right0));
#ifdef DEBUG
fprintf(stderr, "LEFT: %d RIGHT %d\n", sonarLeft, sonarRight);
#endif

This machine will regularly read from the whiteboard the nao_state in order to detect if the chest button
has been pushed and we are at the end of the walk.

Thus, the corresponding handler is used to perform a get-Message. This is the line nao_state =
nao_state_ptr.get(); which we will repeat in internal sections and on-exit sections in this and further
states. We need to set the walk interface ready. This is the walk_post(WALK_Ready); followed by a 15
milliseconds pause to enable the DCM cycle (at 10ms) to pick this up. Then, the command actual walk com-
mand is placed into the whiteboard with walk_post(WALK_ControlStatus(WALK_Run, 35, 0, 0, 5));.
The reminder of this sections are debugging commands for the console about arriving to this state and the
readings of the sonar values.

It is important that the view of the world is regularly updated, so this state must have the following code
in both, its Internal section and its OnEntry section

nao_state = nao_state_ptr.get();
sensorValues=sensorHandler.get();
sonarLeft = int (sensorValues.sonar(Sonar::Left0));
sonarRight = int (sensorValues.sonar(Sonar::Right0));

We have not introduced any transitions. We will leave those till the end. We will now create the state
where the robot walks turning left.

So again, using the Add option of the menu States add a new state called TURN_LEFT. There should
be no surprises here. The code of the OnEntry section is as follows.

#ifdef DEBUG
fprintf(stderr,"STATE: %s\n",state_name());
#endif
nao_state = nao_state_ptr.get();
walk_post(WALK_Ready); protected_msleep(15);
walk_post(WALK_ControlStatus(WALK_Run, 0, 0, -1, 5));
sensorValues=sensorHandler.get();
sonarLeft = int (sensorValues.sonar(Sonar::Left0));
sonarRight = int (sensorValues.sonar(Sonar::Right0));

21

This different parameters on the WALK_ControlStatus object result in the robot spinning on its place
counter-clockwise. The OnEntry and the Internal sections of this state are also only updating the sensor
values (for sonar and for the chest button)

nao_state = nao_state_ptr.get();
sensorValues=sensorHandler.get();
sonarLeft = int (sensorValues.sonar(Sonar::Left0));
sonarRight = int (sensorValues.sonar(Sonar::Right0));

Now add the state TURN_RIGHT, which has the same OnExit and Internal sections that update the
sensors, and also almost exactly the same OnEntry state, but now use WALK_ControlStatus(WALK_Run,
0, 0, 1, 5). The change to a positive 1 as the third parameter makes the robot turn right, and spin in
clockwise direction.

We will now make a state where the robot will stop and kneel down again. This will happen if the chest
button is pressed or if the sonars detect something very very close, so it is actually safer to stop. This state
will be named GAME_OVER. The OnEntry section is as follows.

#ifdef DEBUG
fprintf(stderr,"STATE: %s\n",state_name());
#endif
say("Game Over");
nao_state = nao_state_ptr.get();
walk_post(WALK_ControlStatus(WALK_Disconnect));
protected_usleep(30000);
MOTION_Commands motion;
motion.GoToStance(Motions::Standing_stance, Motions::Kneeling_stance);
motion_ptr.set(motion);
protected_usleep(2000000);
MOTION_Commands motion2(false, false, true);
motion_ptr.set(motion2);

The crucial parts of this code are disconnecting the walk engine so we can issue pre-recorded motion.
This is done with walk_post(WALK_ControlStatus(WALK_Disconnect)); followed by a pause of 30 ms or
30,000µs. Then, a motion command is issued to apply pre-recorded motion to make the robot kneel. We
also wait approximately 2 seconds for this to complete, before issuing a command to remove stiffness in all
motors. Note that is dangerous in the MiPal infrastructure to send to messages of the same class-type in
rapid succession, but here the two motion commands are separated by 2 seconds.

The Internal and the OnEntry sections of this ate are very simple, we just update the status with
respect to touch/pressure buttons with

nao_state = nao_state_ptr.get();

Finally, we will create another state where we can detect another chest button pushed and restart the
robot walking about. This state is called END and has a very simple OnEntry section.

#ifdef DEBUG
fprintf(stderr,"STATE: %s\n",state_name());
#endif
say("The End");
nao_state = nao_state_ptr.get();

The Internal and OnExit sections are also as follows.

nao_state = nao_state_ptr.get();

22

The last state we will add is called SUSPENDED. This is a state we will park this amchine when the
robot has fallen. That is, a p[rent amchine will suspend this machine and send it to the state SUSPENDED.
There can be only one suspend state (same as the initial state), although the name is arbitrary. You add it
as any other state using the menu States and then, you can highlight it as the suspend state by the option
Choose Suspend, that enables to select a state as a suspended state. This state has a very simple code in its
OnEntry section:

walk_post(WALK_Disconnect);
protected_usleep(30000);

Save the statem and now we have all states for this machine.
So, now we are ready to add all the transitions. We will start adding the transitions from the INITIAL

state to the START_SONAR state. So, one needs to change what is the current state. Use the button
STATES and the list of all states should come on on a dialog window. In this case, leave the INITIAL and
chose OK. This should make the INITIAL the current state. To add a transition, use the Transitions and
chose the option to Add. A window with potential target states comes up. Chose the START_SONAR as
the target. Now, edit the default expression (true) to the expression after_ms(2000). This means we will
move form INITIAL to START_SONAR after 2 seconds (you can also use after(2).

Now the transition from START_SONAR state to the WALK_ABOUT state. So, we need to use the
button STATES and select the state START_SONAR. Then, once this is a current state, we need to select a
target state. This requires to use the Add of the Transitions menu. Here we will allow 4 seconds for the robot
to reach standing up and we will also test that the status of the motion has completed. So, the transition is

after_ms(4000)&& ! motion_status_handler.get().isRunning()

This should be the replacement of the default Boolean expression for this transition.
Note the advantages of messages being objects, we take advantage of dynamic binding and to the object

we get using the get-Message on the handler, we directly request whether it is running using the method
isRunning().

Now, where we have more than one transition out of the same state is for the WALK_ABOUT. We
will spin the robot if we are closer than 50cm from an obstacle. So, lets make the WALK_ABOUT state
the current state (use the STATE). We first add the transition to the TURN_RIGHT. The transition is
sonarLeft < 50.

We also add a transition with target the state TURN_LEFT. This transition is when we are closer
than 50cm on the other sensor. Namely, sonarRight < 50. Finally, we place a third transition out of the
WALK_ABOUT state. This time the target is the state GAME_OVER. The expression is as follows.

nao_state.chest_pressed() || (sonarLeft < 28) || (sonarRight < 28)

This ensures that if we are too close to an obstacle we stop, also, if the chest button is pressed, the robot
will stop and kneel.

Change the current state to the TURN_LEFT. In this state we also want to stop if a chest button is
pressed of we are too close to an obstacle while spinning. So, with target state the state GAME_OVER we
add the following transition.

nao_state.chest_pressed() || (sonarLeft < 21) || (sonarRight < 21)

We use now 21cm, somewhat less than when walking forward, because spinning around is OK to be a bit
closer to obstacles, while walking straight requires slowing down the direction into the obstacle. We need a
transition to go back walking straight when the obstacle is no longer in front. So, form the state TURN_LEFT
where we adding transitions now, we add a second transition with target WALK_ABOUT.

after_ms(500) && (sonarLeft > 50)

This ensures we always spinning at least half a second when we have detected an obstacle.
Now, if we make the current state the state TURN_RIGHT, then we add two analogous transitions also to

the corresponding target states. Thus, from TURN_RIGHT to GAME_OVER we add the following transition.

nao_state.chest_pressed() || (sonarLeft < 21) || (sonarRight < 21)

23

Figure 9: The states and transitions of the BatNaoMoves machine.

And also, from TURN_RIGHT to WALK_ABOUT.

after_ms(500) && (sonarRight > 50)

the transitions that test sonarRight > 50 seem to be the other way around in the example code,
need tot est this.

There is just two more transitions to go. The next one goes from the state GAME_OVER, so make this
the current state by using the States and choosing the option Add again in the Transitions menu. Then, select
the state END as the target. Edit the default expression true to the following expression

!nao_state.chest_pressed() && after_ms(4000) && ! motion_status_handler.get().isRunning()

This checks the chest button on the robot is no longer pressed, 4 seconds have gone by, so the robot
kneels, and also the motion has stopped (it is not running.

The last transition now has END as a source and INITIAL as a target. It enables a reset of the behavior.
Simply, if the chest button is pressed.

nao_state.chest_pressed()

After all this transitions, the LLFSM called BatNaoMoves should have transitions as per Fig. 9.
It also, should have state activities similar to those of Fig. 10
You can run this machine on its own; without any other machines. You need a Nao set up with the

fundamental MiPal modules and be able to cross-compile the machine. Then place the compiled machine
into the robot. Read the MiPal Getting Started document. Test the machine. Of course, the machine does
not end, and without the machine that control the chest button, once the robot kneels again (because you
put your hand very very close to its sonar), the behavior is basicly stuck in the END.

So, the next step is to include the machine that collects the inputs of the pressure/touch sensors.

8.2 A machine to post to the whiteboard from the chest button of the Nao
The states and transitions of this state machine are shown in Fig. 11.

Some of the code in the states of the machine shows the philosophy on using the MiPal whiteboard in a
manner that uses a get-Message (a pull approach) over using a subscribe (a push-approach). For example,
the OnEntry section of the Button_Off has the following 4 lines of code.

SENSORS_LedsSensors_t leds_ptr;
SENSORS_LedsSensors led = leds_ptr.get();
led.LEDsGroupChange(Chest, Red);
leds_ptr.set(led);

24

Figure 10: The inside of the states of the BatNaoMoves machine.

Figure 11: The inside of the states of the SMButtonChest machine.

25

The first line defines a whiteboard handler for a message of the class-type SENSORS_LedsSensors. The second
line of code actually carries out the get-Message. That is, a copy from the whiteboard is now in the variable of
the machine. Then, the third line of code updates the status in the local copy: led.LEDsGroupChange(Chest,
Red);. Finally, the fourth line moves the local copy using the same handler back into the whiteboard. This
technique eliminates all sorts of concurrency issues regarding the same class-type of messages because, as
long as it is only LLFSMs operating on the whiteboard, the sequential scheduling by clfsm guarantees no
race conditions for the data/messages on the whiteboard.

We invite you to build this machine yourself. Restart MiEditLLFSM and create a new machine. Use
the INCLUDES to create the following includes for compilation of all states in the machine

#include <iostream>
#include <stdio.h>
#include <string>
#include <cmath>
#include <gu_util.h>
#include "CLMacros.h"
#include "typeClassDefs/SENSORS_BodySensors.h"
#include "typeClassDefs/SENSORS_LedsSensors.h"
#include "typeClassDefs/NAO_State.h"
#include "CLWhiteboard.h"
using namespace guWhiteboard;
using namespace std;
//#define DEBUG

Use the DIRECTORIES to specify the following directories to search for include paths at compilation.

$GUNAO_DIR/posix/gusimplewhiteboard/typeClassDefs
$GUNAO_DIR/posix/gufsm/clfsm
$GUNAO_DIR/posix/gusimplewhiteboard
$GUNAO_DIR/Common

To complete the elements common to all states you need to include the variables common to all states.
Use the VARIABLES button and add the following declarations.

SENSORS_BodySensors body
SENSORS_BodySensors_t body_ptr
NAO_State_t nao_state_ptr
NAO_State nao_state

Again, the class-type message NAO_State is the most crucial as it is the real output of this machine. It
is initially set to zero in the OnEntry section of the state Zero. It is set in 3 lines of code.

nao_state = nao_state_ptr.get();
nao_state.set_chest_pressed(0);
nao_state_ptr.set(nao_state);

Again, the methods is to use pull-technology; that is a get-Message as opposed to a subscribe. So the
first-line obtains the current copy in the whiteboard, and gets a local object. The second line uses essentially
a property-setter of the class-type to set the number of presses received in the chest button to zero. The
third line, places the object back into the whiteboard using the object handler.

So, the way this machine works is that in the state Button_On, the count is incremented by the OnEntry
section. This happens when we detect a button pushed (the transitions labeled body.ChestBoard_Button()
) and we go out of this state when the button is released the transition ! body.ChestBoard_Button().
However, if more than 500ms (that is half a second) goes by, we go into the state Long_Press. In this state,
once again, three lines of code of the its OnEntry section modify a property of the nao_state object on
the whiteboard. This again, is made by pull-technique.

nao_state = nao_state_ptr.get();
nao_state.set_chest_pressed_long(true);
nao_state_ptr.set(nao_state);

26

Figure 12: The inside of the states of the BatManController machine.

That is, we do a get-Message first to obtain information (an object) from the whiteboard into the machine.
Then, the object of the class-type NAO_State is modified with a setter of such class-type. Then, the handler
to the whiteboard is sued to place it back on the whiteboard, for other machines to use. In particular, the
earlier BatNaoMoves machine.

Also, this state Long_Press is finished when the button is no longer being pressed. In that case, the
information on the whiteboard about a long-press being in effect is offset. This happens on the OnExit
section of the state Long_Press.

nao_state = nao_state_ptr.get();
nao_state.set_chest_pressed_long(false);
nao_state_ptr.set(nao_state);

Again, the methods is a pull-approach that gets the object out of the whiteboard, sets a property of the
object, and places it back on the whiteboard.

With these two machines, you should be able to create a behavior that is quite fun to watch. The robot
walks about avoiding obstacles. As long as it does not fall down, you can stop it by pressing the chest button
and also re-start it by pressing the chest button.

8.3 A super-machine to regulate when to run the get up behavior
We will create a new machine that basicly runs the BatNaoMoves machine when the robot is standing,
or runs behaviors to get the robot up if it has fallen. The idea is rather simple (see Fig. 12). In the Init
state (which is the initial state) all sub-machines are suspended and after 20ms, which shall be enough
to ensure they will not run, but perhaps the order of the machines in the invocation to clfsm
matters. the order is given to resume the BatNaoMoves machine. However, at all times, the state of the
robot is being monitored by obtaining (using a pull-method) the state of the robot; namely an object of the
class NAO_State. This is why we have, in the OnEntry and in the Internal sections the following code.

nao_state = nao_state_ptr.get();

The transition out of the state BAT_MAN_BEHAVIOR to GetUp is nao_state.fallen(). This will be true
if the robot is down.

The OnEntry section of the GetUp state suspends the BatNaoMoves machine and re-starts the
FallManager machine. Thus, we move on to specify the FallManager machine.

27

Figure 13: The inside of the states of the FallManager machine.

8.4 The FallManager machine
This machine in turn manage one other submachine (see Figure 13). There are some important things
as you use MiEditLLFSM to build the FallManager machine. First, the initial state should be the
INITIAL. Also, very important, this machine assumes that some other machine has started the machine
RobotPosition. And also interesting, this machine, when it achieves its job, it arrives at its suspend state,
where it ensures the GetUp is suspended. Because this machines arrives by itself to is suspend state, we
need a transition out-of and into the state SUSPENDED, so this state is not considered a temrinating final
state.

The intuition of the FallManager machine is that when it restarts, it is because the robot has already
fallen, and the RobotPosition has established in the whiteboard what sort of position the robot is in.
Once RobotPosition is suspended, we can restart the GetUp. Once the machine GetUp completes, we
shall be in the state GET_UP_FINISHED. The way the machine is drawn, there are 3 passes over the state
CheckStance where if the robot is not standing, then the machien will go to the state RunGetUp. However,
perhaps this machine can eb simplified, with just waiting for 1.5 seconds instead of 3 times for half a second.
Moreover, the stability variable is not set to zero in the loop of the state RunGetUp. So, this machine
gives up attempting to get up in 3 trials.

8.5 The machine to determine the orientation of the robot
The machine RobotPosition monitors sensors and according to them sets a status variable in the object
of class-type NAO_State. The machine is rather simple but its illustration (refer to Figure 14) needs some
explanation. In its initial state (the state Init) two variables are given values. The intention is to treat these
variables as constants in the machine.

The crucial element are the transitions. And also that the transitions must be executed in order. Note
that each transition does a get-Message. Perhaps all of these get-Messages should be in the state Check,
and updating a couple of variables. You may try that. Each transition verifies a condition of how the robot
is lying down. The corresponding state uses the pull-method to update the stance accordingly in the object

28

Figure 14: The inside of the states of the RobotPosition machine.

of class-type NAO_State on the robot. For example, the state FallenBack has the following 3-lines of code.

NAO_State_value = NAO_State_ptr.get();
NAO_State_value.set_stance(FallenBack);
NAO_State_ptr.set(NAO_State_value);

That is, we use the handler NAO_State_ptr to obtain an object of class-type NAO_State into the variable
NAO_State_value. We then use a setter in this class to change the property:

NAO_State_value.set_stance(FallenBack);

The third line of code places the object back into the whiteboard. All other states are analogous here. What
is crucial is the order of the transitions. The last transition to evaluate is the transition from the state Check
to the state StandingUp. It has the form

NAO_State_ptr.get().stance() != Standing

And thus, if none of the other transitions has fired, then it declares the robot standing! Thus, the order of
the transitions is as follows.

RAD2DEG(body_ptr.get().InertialSensor_AngleY())<(-frontalAngle)
RAD2DEG(body_ptr.get().InertialSensor_AngleX())>lateralAngle
RAD2DEG(body_ptr.get().InertialSensor_AngleX())<(-lateralAngle)
RAD2DEG(body_ptr.get().InertialSensor_AngleY())>frontalAngle
NAO_State_ptr.get().stance() != Standing

The target states are FallingBack, FallingRight, FallingLeft, FallingForward, and StandingUp.

8.6 The machine to get up
This machine is also rather simple. However, somewhat delicate. this machine has true transition if
the robot has not fallen forward, making some of the other transitions to Back_GetUp very redundant.

29

Figure 15: The inside of the states of the GetUp machine.

Its initial state is Init. Here, the walk engine is disconnected so we can execute pre-recorded motions. The
motions to get-up from falling on its back, or get up, from falling on its chest are pre-recorded motions. The
state Check obtains using a get-Message a NAO_state object. The stance property is tested in order to
decide how to get up. Until the motion does not complete, which is the predicate

!motion_status.get().isRunning()

this machine does not achieve its suspended state. To build this machine correctly you need to label the last
state as the suspended state.

it is unclear when the walk engine is connected again.

9 Further work
There should be a way to declare constants that have the scope of all states. Perhps ina seciton similar to
the variables that have scope of the states of a machine.

References
[1] A. Agrawal, G. Simon, and G. Karsai. Semantic translation of simulink/stateflow models to hybrid

automata using graph transformations. Electr. Notes Theor. Comput. Sci., 109:43–56, 2004. 1

[2] D. Billington. A defeasible logic for clauses. In D. Wang and M. Reynolds, editors, 24th Australasian
Conference on Artificial Intelligence, volume 7106 of Lecture Notes in Computer Science, pages 472–480.
Springer, December 2011. 1

[3] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock. Chapter 3: Non-monotonic reasoning on board
a sony AIBO. In P Lima, editor, Robotic Soccer, pages 45–70, Vienna, Austria, 2007. I-Tech Education
and Publishing. 1

[4] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock. Architecture for hybrid robotic behavior.
In E. Corchado, X. Wu, E. Oja, A. Herrero, and B. Baruque, editors, 4th International Conference
on Hybrid Artificial Intelligence Systems HAIS, volume 5572, pages 145–156. Springer-Verlag Lecture
Notes in Computer Science, June 2009. 1

30

[5] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock. Requirements engineering via non-monotonic
logics and state diagrams. In Evaluation of Novel Approaches to Software Engineering, volume 230,
pages 121–135, Berlin, 2011. Springer Verlag. 6

[6] M Breen. Statecharts: Some critical observations, 2004. 6

[7] R.A. Brooks. Intelligence without reason. In R. Myopoulos and R. Reiter, editors, Proceedings of the
12th International Joint Conference on Artificial Intelligence, pages 569–595. ICJAI-91, 1991. Sydney,
Australia. ISBN 1-55860-160-0. 7.2

[8] R. Coleman, V. Estivill-Castro, R. Hexel, and C. Lusty. Visual-trace simualtion of concurrent finite-state
machines for valdiation and model-checking of complex behavior. In N. Ando, D. Brugali, J. Kuffner, and
I. Noda, editors, SIMPAR 3rd Int. Conf. on Simulation, Modeling and Programming for Autonomous
Robots, volume 7628, pages 52–64, Tsukuba, Japan, November 5th-8th 2012. Springer-Verlag Lecture
Notes in Computer Science. 6

[9] V. Estivill-Castro, R. Hexel, and D. A. Rosenblueth. Failure mode and effects analysis (FMEA) and
model-checking of software for embedded systems by sequential scheduling of vectors of logic-labelled
finite-state machines. In System Safety, The 7th International IET System Safety Conference, incor-
porating the Cyber Security Conference 2012, Edinburgh, UK, 15th - 18th October 2012. CD-ROM
Proceedings. Paper 3.a.1. 6

[10] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A. Lindsay. Experience with fault injection
experiments for FMEA. Software, Practice and Experience, 41(11):1233–1258, 2011. 6

[11] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-trauring, and M. Trakht-
enbrot. Statemate: A working environment for the development of complex reactive systems. IEEE
Transactions on Software Engineering, 16:5, 1990. 1

[12] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Transactions on Software
Engineering Methodology, 5(4):293–333, 1996. 1

[13] B. Hayes-Roth. A blackboard architecture for control. In A. H. Bond and L. Gasser, editors, Distributed
Artificial Intelligence, pages 505–540, San Francisco, CA, USA, 1988. Morgan Kaufmann Publishers
Inc. 4

[14] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley Publishing Co., Reading, MA, 1979. 1

[15] M. Klotzbuecher. rFSM v1.0-beta6. www.orocos.org/rfsm, 20th February 2012. 1, 5

[16] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE, 91(1):112–126,
2003. 6

[17] S. J. Mellor and M. Balcer. Executable UML: A foundation for model-driven architecture. Addison-
Wesley Publishing Co., Reading, MA, 2002. 1

[18] T. Merz, P. Rudol, and M.; Wzorek. Control system framework for autonomous robots based on extended
state machines. In Proceedings of the International Conference on Autonomic and Autonomous Systems,
ICAS ’06, page 14, Silicon Valley, CA, July 16-18 2006. 6

[19] O. Michel. Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems,
1(1):39–42, 2004. 1

[20] J. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premerlani. Object-Oriented Modelling and
Design. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991. 1

[21] M. Samek. Practical UML Statecharts in C/C++, Second Edition: Event-Driven Programming for
Embedded Systems. Newnes, 2008. 1

31

[22] I. Sommerville. Software engineering (9th ed.). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2010. 4

[23] M. von der Beeck. A comparison of statecharts variants. In Proceedings of the Third International
Symposium Organized Jointly with the Working Group Provably Correct Systems on Formal Techniques
in Real-Time and Fault-Tolerant Systems, ProCoS, pages 128–148, London, UK, UK, 1994. Springer-
Verlag. 1

[24] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme. Modeling Software with Finite State Ma-
chines: A Practical Approach. CRC Press, NY, 2006. 1

[25] L. Wen, R. Colvin, K. Lin, J. Seagrott, N. Yatapanage, and R.G. Dromey. “Integrare”, a collaborative
environment for behavior-oriented design. In T. Luo, editor, Cooperative Design, Visualization, and
Engineering, 4th International Conference, CDVE, volume 4674 of Lecture Notes in Computer Science,
pages 122–131, Shanghai, China, September 16-20 2007. Springer. 6

32

	Introduction
	The Hello World LLFSMs
	Entering code
	Opening an existing machine

	A first execution, and include files
	Adding another state
	Transitions
	Editing a transition

	Variables
	Concurrency model
	Arrangements of machines
	An example with Webots
	Machine that follows a line
	Obtaining the maximum speed and the camera width
	Obtaining the difference of desired system-state and current system-state and issuing a proportional correction
	Sending the motors their new speed

	Machine to control the line follower — an arrangement of machines
	The SUSPEND state
	Testing if a machine is running

	The DriverForFollower LLFSM

	A behavior to avoid obstacles on the Nao humanoid robot
	The walk about behavior
	A machine to post to the whiteboard from the chest button of the Nao
	A super-machine to regulate when to run the get up behavior
	The FallManager machine
	The machine to determine the orientation of the robot
	The machine to get up

	Further work

