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Chapter 1

Introduction

This document illustrates the use of the software

JavaLLFSMsTransformation

and its associated tools. The aim of this software is to enable the construction of executable models of
behaviour (as logic-labelled finite-state machines) that can be transformed either into executable models
(in C, MIPS, or LISP) or into formal models (in NuSMV or TLA+) for formal verification.

An short video (https://www.youtube.com/watch?v=RFpwlsb50ds) of the usage of the tools with the
Microwave example of Section 3.3.

1.1 Running the public docker image llfsms-examples

You should have docker installed1. We recommend you run the image with a results folder mapped so
you can move PDF files to your host.

rm -fr results
mkdir results

If you are running under MacOs (your host is a Mac) you need to run (and thus download with the tag
darwin)

docker run -v $PWD/results:/opt/results -ti –rm vladestivillcastro/llfsms-examples:darwin /bin/bash

If you are running under Ubuntu2 you need to run (and thus download with the tag linux-gnu)
docker run -v $PWD/results:/opt/results -ti –rm vladestivillcastro/llfsms-examples:linux-gnu /bin/bash

You will be root in the image and the software is copied to opt
opt

Examples
OutputOnlyPingPongTikiTaka.d
RealTimeBounds.d

Fischer.d
FischerCopies.d
Microwave.d
TimedExpresion.d

SchedulersForLLFSMs.d
set_environment.sh

README.md
Tools

1www.docker.com
2It is common in Ubuntu to use sudo before each docker command.
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Cexecutable
JavaLLFSMsTransformation
MIPS
lisp-scheduler
mipsel-linux-musl-cross

As you run the container, you should find yourself in the folder with the examples.
cd /opt/Examples

Moreover, the .bashrc should have set the environment running
set_environment.sh

You are now ready to work with the examples. Move on to Chapter 2. NOTE: At this time, We are
regularly updating this release, so if you have the image locally, it may be the case that you are not running
the latest version. Check the last update in hub.docker.com/search?q=llfsms

1.2 Downloading the repository with the examples
The examples are available, currently in a private directory, at
git@github.com:vladestivillcastro/LLFSMTransformationExamples.git.

If you are starting from a fresh installation of Ubuntu, you may need to install git.
sudo apt install git

The cloning from github may vary according to your credentials. However, a common way to download
the repository is as follows.

git clone git@github.com:vladestivillcastro/LLFSMTransformationExamples.git

This will create a directory LLFSMTransformationExamples. The repository has a structure similar to
this.

LLFSMTransformationExample
Dockerfile
setImage.sh
runImage.sh
Examples

OutputOnlyPingPongTikiTaka.d
RealTimeBounds.d

Fischer.d
FischerCopies.d
Microwave.d
TimedExpresion.d

SchedulersForLLFSMs.d
set_environment.sh

README.md
Tools

Cexecutablelinux-gnu.tar
MIPSlinux-gnu.tar
JavaLLFSMsTransformation.tar
lisp-scheduler.tar
runLLFSMS.asm

The file README.md that comes with the examples complements these instructions to reproduce the
examples.

The file Dockerfile is the file to build a docker image similar to the public release mentioned in
Section 1.1. However, here we show that we can create a clean image. This is an alternative way of
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working with the examples. Remember that the simplest way of working with the examples in
a way agnostic of whether you are running MaCOS or Linux is to run inside a container.

We recommend to build the image using the script setImage.sh. If you are running under MacOs
(your host is a Mac), run the script as follows.

source ./setImage.h
But if you are running under Ubuntu, you probably need sudo to run docker and its commands. So you
run the script to build the image as follows.

sudo ./setImage.h
Now you can run a container for this newly lcoally created image. If you are running under MacOs,

run the scripta that starts the container as follows.
source ./runImage.h

But with Ubuntu, reacall you probably need sudo to run docker.
sudo ./runImage.h

You are in the container now. Navigate to the folder with the examples.
cd /opt/Examples

Set up the environment.
source set_environment.sh

You are now ready to work with the examples. Move on to Chapter 2.

1.2.1 Directory Tools

The directory Tools is a subdirectory of LLFSMTransformationExample. In the directory Tools you will
find the tools in executable format. You should move to this directory and open the packages.

cd Tools
tar -xvf JavaLLFSMsTransformation.tar
tar -xvf Cexecutable.tar
tar -xvf lisp-scheduler.tar

This expands the file structure as follows.
LLFSMTransformationExample

Examples
OutputOnlyPingPongTikiTaka.d
RealTimeBounds.d

Fischer.d
FischerCopies.d
Microwave.d
TimedExpresion.d

SchedulersForLLFSMs.d
set_environment.sh

README.md
Tools

Cexecutable.tar
Cexecutable

cobjects
cobjects-linux
includes
MakefileForArrangement

JavaLLFSMsTransformation
dist

JavaLLFSMsTransformation.tar
lisp-scheduler

MacOs
linux

MIPS
runLLFSMS.asm
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1.2.2 Setting your environment

Our software is written in Java, and we have tried to use the most agnostic version of java. For MacOS
we are using version 1.8. For Ubuntu 20 and Ubuntu 22 we are using openjdk 11.0.18. The EMF (Eclipse
Modelling Framework) classes we have in the repository are starting to give warnings, meaning that a
higher java version may not work unless corresponding EMF classes are used instead.

We use several other tools, and you may need to install these. If you are using Ubuntu from a fresh
installation, some of them are installed as follows.

sudo apt install gcc

This is the C-compiler, it is needed after the translation of a model to C, to execute the model. If you
want to run the LISP examples you will need the following in Ubuntu.

sudo apt install clisp

Also, if you want to visualise the models with dot, you need to install graphviz in Ubuntu as well.
sudo apt install graphviz

Other requirements are tools (like the TLC model checker or the NuSMV model checker) that you will need
to install by downloading that software and following the corresponding instructions. Some of them have
prerequisites, like TLC requires

sudo apt install curl

in Ubuntu.
The directory Examples is a subdirectory of LLFSMTransformationExample. To help you setting the

environment, in the directory Examples there is a script that supports setting the environment variables
of the bash shell. This file has the name set_environment.sh. If you are still in the Tools directory, the
commands are as follows.

cd ../Examples
source set_environment.sh

Inspect the output from this carefully. It would indicate if it finds the Tools directory, whether you
are using MacOs or Linux (Ubuntu) and if it has found the necessary compilers, or model checkers and
where to get them from so it can set environment variables to where these tools are.
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Chapter 2

LLFSMs: Executable and verifiable models

2.1 Simple example: OutputOnlyPingPongTikiTaka

Each example should come with a file test.sh that is a script that illustrates the demonstrations we have
prepared with a particular example.

1 #
2 # (c) 2022 Vladimir Es t i v i l l −Castro
3 # This commands i l l u s t r a t e d i f f e r en t targe ts of the Makefile
4 #
5 #
6 make c l ean
7 echo Producing DOT f i l e to de r i v e PDF
8 make dot
9 make b r i e f −dot

10 make timer−dot
11 echo Producing LISP f i l e to test running
12 make l i s p
13 # How to run the LISP version need the path to the LISP LLFSM interpreter
14 #source ‘make name‘ . sh 2> junk
15 #
16 echo Producing NUSMV f i l e to test p r op e r t i e s
17 make smv
18 echo t e s t i n g p r op e r t i e s with NuSMV
19 make test−p r op e r t i e s
20 echo Producing C program to compile with C−language
21 # How to compile in C needs path to plainCscheduler includes and compiled objec ts
22 make C
23 make −f $PLAIN_C_SCHEDULER_INSTALLATION/Makefi leForModelToTextTransformation c f i l e =‘make name ‘
24 #Running the compiled C f i l e
25 #./ executab les / ‘make name‘ . exe
26 echo Producing TLA f i l e to produce s p e c i f i c a t i o n with TLA notat ion
27 make t l a
28 # How to produce the TLA in PDF depends on where TLS’ s command too l s are in s t a l l e d
29 #$TLA_COMMANDS_INSTALLATION/ t l a t e x −latexCommand pdf la tex −latexOutputExt pdf ‘make name‘ . t l a
30 # To te s t the propert ies with t l c , see the Makefile , now the trans la tor produces config f i l e s for TLF
31 # I f you want to use the Toolbox , create a new spec i f i ca t ion ( spec )
32 # use the t l a f i l e to copy−paste the spec
33 make test−t la−p r op e r t i e s
34 echo Producing asm f i l e to s imulate with MARS http ://www. cs . m i s s ou r i s t a t e . edu/MARS/
35 make mips
36 # To run the assembler version
37 # RUN MARS from the command l ine with a recommended l imi t of MIPS instruct ions
38 #java −jar $MARS_HOME/Mars4_5. jar 5000 ‘make name‘ . asm

Figure 2.1: A fragment of the test.sh shell script.

These demonstrations are usually coded into the Makefile as specific targets. If we start with the
simplest example OutputOnlyPingPongTikiTaka we need to enter the directory of the example.

cd OutputOnlyPingPongTikiTaka.d

Note that this directory contains a file OutputOnlyPingPongTikiTaka.xmi. The xmi format is used
by the Enterprise Modelling Framework. We created it with our graphical editor for our models.

Here, we can inspect the file test.sh
more test.sh

and see that one of the earliest things to do (Line 8 in Figure 2.1) is to produce a PDF file of the model.

7



make dot

Issuing this target with make will invoke the translator which uses as input the model (the model is the input
file OutputOnlyPingPongTikiTaka.xmi) and produces a dot file OutputOnlyPingPongTikiTaka-regular.dot.
Also the target calls dot to generate the corresponding PDF. So now you can use your favourite tools to
open a PDF file and open OutputOnlyPingPongTikiTaka-regular.pdf and see an arrangement of two
logic-level finite-state machines, one called PingPong and the other called TikiTaka.

If you are using the docker image, there is no GUI environment, so you shall move the PDF files from
the container to your host.

mv OutputOnlyPingPongTikiTaka-regular.pdf /opt/results/

Now you can use any PDF viewer in your host to inspect the PDF file.

2.1.1 Translating to LISP

The test.sh file also illustrates how to generate the LISP translation of the same model.
make lisp

This produces a script file OutputOnlyPingPongTikiTaka.sh. Now, if you want to run the model using
clisp we see how this illustrated in the test.sh file.

source `make name`.sh 2> junk

Note that the Makefile has a target name, so that make name saves writing out the name of the particular
example. That is make name is uniform across all examples (and almost all Makefiles and test.shs files
are equal for all examples.

Be prepared to send the stop signal to kill this process as the machines run continuously,
alternating between their two states and the arrangement providing a turn to each machine
in round robin fashion.

2.1.2 Model checking with NuSMV

The above section shows the model is executable. Now we are going to verify properties in LTL and CTL
using NuSMV. You would need to install NuSMV and make sure that NuSMV can be found. Test this with

which NuSMV

If this does not work, maybe you need to edit your .bashrc and add the path to where the binary of
NuSMV is. If NuSMV can be found, we translate the model and also run NuSMV with option -ctt all within
the same make target.

make smv

You should get output that indicates no deadlock exists in this model. To check for properties, we have a
target as well

make test-properties

You would see that the model satisfies all properties. Some are properties in the temporal logic LTL and
appear in the file ltl-properties.nusmv and some are CTL properties placed in the corresponding file
properties.nusmv. Inspect these files to see comments to these properties so you can probably review
their explanations.

more ltl-properties.nusmv
more properties.nusmv
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2.1.3 Running with C

The previous execution with LISP is probably interpreted. But logic-labelled finite-state machines can be
compiled. Or at least the scheduler and running system. We also use this illustration to show that the
executable model is agnostic to the target implementation. Thus, to translate the same model to C, the
target is as follows.

make C

Again, this command is illustrated in the test.sh file. Now to compile against the object files of the
meta-model, we invoke the corresponding Makefile for invoking gcc.

make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

This uses the environment variables when we ran set_environment.sh. Inside a container we link against
binaries that use proper system calls for the architecture of the host. That is why the images come in two
versions. This should be now transparent to you (whether we link against Ubuntu-linux binaries or MacOS
binaries). You will see the invocation of the gcc compiler and the executable is placed in a subdirectory
executables So to execute the compiled C translation we now do

./executables/`make name`.exe

(this line is also in test.sh so you can copy and paste from it).

2.1.4 Using a second model checker: TLC

TLC is another model checker part of the series of tools of TLA+, which uses a subset of LTL called TLA
(temporal logic of actions) to define the model and its properties. So you need TLC (which uses java and
curl). Again, test.sh shows what the target is to use this model checker.

make tla

To run the TLC against the translated model now in TLA+ we issue the following.
make test-tla-properties

You can inspect the properties (many are the translation to TLA+ from how they were LTL properties in
SMV for NuSMV).

more properties.tla

Here, properties must be written so they occupy a single line for our script to properly place them in the
configuration files for TLC. So the comments comply with the requirement of one line per property.

2.1.5 Generation and verification of sanity properties

The command
make smv

not only generates the NuSMV model but also uses the model checker with the flag -ctt which performs
some verifications and validations over the corresponding Kripke structure (the NuSMV manuals says
enables checking for the totality of the transition relation).

However, we argue that one advantage of the automatic generation of models for model-checkers is
that we also can generate the properties to verify automatically, thus, minimising the chances we forget
something to check. For example, we may want to make sure that every state is each of our LLFSMs in an
arrangement is eventually reachable. Otherwise, why would we have included a state that is never used.
Thus, for this example we can run the command

make test-sanity

and an LTL formula for all states in the arrangement is generated:
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F PingPong.At_START_PING_PONG
F PingPong.At_PING
F PingPong.At_PONG
F TikiTaka.At_START_TIKI_TAKA
F TikiTaka.At_TIKI
F TikiTaka.At_TAKA

and also run against the NuSMV model checker. This sanity check can also be performed with TLC since
this formulas are within the LTL subset of TLA+.

test-tla-sanity

Similarly, for every state S that is source of some transition, we test that if we reach S, we also
eventually leave S. Therefore,

make test-sanity

also generates during translation and then verifies the following properties.
G (PingPong.At_START_PING_PONG -> F !PingPong.At_START_PING_PONG)
G (PingPong.At_PING -> F !PingPong.At_PING)
G (PingPong.At_PONG -> F !PingPong.At_PONG)
G (TikiTaka.At_START_TIKI_TAKA -> F !TikiTaka.At_START_TIKI_TAKA)
G (TikiTaka.At_TIKI -> F !TikiTaka.At_TIKI)
G (TikiTaka.At_TAKA -> F !TikiTaka.At_TAKA)

All these properties are true of this arrangement. However, although they may be intuitively always
true of all arrangements, this is not the case for open models. Recall that open models will have external
variables that represent input from the environment (say a user, or a sensor). In those cases, the path to
a state S may be enables, but then the environment doe snot provide the input to exit such a state,

Another series of automatically generated properties are those regrading the scheduling of turns to
each LLFSM in the arrangement. But, as we will see later, also these properties should be tailored to the
scheduler. For example, only in the sequential scheduler the turns follow the round robin patterns that

turn’ = (turn+1) % length of arrangement

2.1.6 Translating to assembly and running in MIPS simulator

The last demonstration produces a translation into the assembly language of MIPS. Inside a container,
the code is cross-compiled to binary code for MIPS little endian of 32 bits, and executed by the qemu
emulator. On the source version, the code can be executed with the MARS simulator (MARS is also written
in java). For this option, the path to where you installed MARS is necessary and you need to adjust the
set_environment.sh accordingly.

In the docker container, launching the translation of the model to assembly is the following target.
make mips_docker_qemu

The file test.sh shows how to cross-compile the model with gcc from musl.
make -f $MUSL_MIPS_SCHEDULER_INSTALLATION/MakefileMUSL cfile=`make name`

Finally, we execute the MIPS binary with the corresponding emulator.
qemu-mipsel ./executables/OutputOnlyPingPongTikiTaka.exe

The option with source is built with
make mips

Once more test.sh shows how to execute the model with the MARS simulator.
java -jar $MARS_HOME/Mars4_5.jar 5000 `make name`.asm

In this case, we have put a limit to the execution so there is no need to kill the process.
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2.2 The Fischer’s mutual exclusion example — two threads
This example illustrates an algorithm for mutual exclusion. The first example has only two threads and is
in the directory

RealTimeBounds.d/Fischer.d
This example provides a README.TXT file for two references that describe Fischer’s algorithm. The produc-
tion of visualisations using dot has been tested here for MacOS and Ubuntu. The different versions are as
follows.

make dot
make brief-dot
make timer-dot

The brief version does not draw OnExit and Internal sections, which is convenient since all the examples
we have do not have these sections. The timer version draws timers in case the model has temporal
transitions. This option is best illustrated with the Microwave example (see Section 3.3).

2.2.1 The LISP version

The target for lisp is issued as follows
make lisp

This command produces the LISP version. You can use the illustration in the file test.sh again to run
the LISP LLFSM scheduler.

source `make name`.sh
In this example, we have four external variables to hold each of the two threads at two parts of the be-
haviour. That is, the user (playing the role of the environment) can control how long does each thread
stays in its critical section. Also, the user can control how long does each thread stays in its non crit-
ical section. The Boolean variables T1_CRITICAL_SECTION_DELAY, T1_NON_CRITICAL_SECTION_DELAY,
T2_CRITICAL_SECTION_DELAY, and T2_NON_CRITICAL_SECTION_DELAY regulate such delays. They are ex-
ternal Boolean variables. When the program is run with the LISP scheduler, for every ringlet, the user is
asked to provide Boolean values for these four external variables. A quick view of the behaviour consists in
setting each variable repeatedly to 1 in every ringlet. In that case both threads exit critical and non-critical
sections as soon as they arrive. When formal verification is performed on this example, obviously all possi-
ble sequences of providing values to these four variables are considered. Verifying mutual exclusion means,
the user can not find ways of providing values (delaying or shortening the stay on the critical or non-critical
sections) so that both threads are at some point in their critical section. That is, such verification means
that no matter how short or long is the performance of the single CPU while at each of the sections, it is
never possible that both threads enter their critical sections.

The LISP scheduler does not obey the LLFSMs semantics that after the evaluation of a transition to
true, the OnEntry of the next section is atomically executed. That is, LLFSMs have a semantics where the
evaluation of the transition and the execution of the code in the target state are similar to the Compare and
Swap primitive for mutual exclusion (See: Herlihy, Maurice [January 1991]. “Wait-free synchronization”,
ACM Trans. Program. Lang. Syst. 13 (1): 124–149.) That is, when the expression in the transition
evaluate to true, the body of the target state is executed atomically. If it evaluates to false, nothing
happens.

Since the current LISP scheduler does not obey this atomicity semantics, it is possible by answering
always 1 repeatedly in every ringlet that both threads reach their respective critical sections simultaneously.
This illustrates critically the required implementation of the atomicity semantics of LLFSMs. A discussion
of the possible semantic variants that emerge because of using sections inside states or because of when
and how often sensor variables are read from the environment see Section 3.4. We leave for further work
re-writing the LISP scheduler so instead of a very old semantics where LLFSMs had three sections in a
state (OnEntry, Internal, OnExit), it only has the atomicity to OnEntry. Note that the old semantics of
running a ringlet had atomicity when a transition fired and the OnExit of the source state.
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2.2.2 Using NuSMV and different schedulers

The translation of the LLFSM model for Fischer’s algorithm with the standard semantics (of a round-robin
scheduler and atomicity from evaluating the transition and in the case it is true following it up with the
evaluation of the OnEntry of the target state) is achieved with the following target.

make smv-sequential
The mutual exclusion properties are then evaluated with the following target.

make test-properties-sequential
This verifies mutual exclusion properties in LTL in the file ltl-properties.nusmv. The file for CTL
properties is properties.nusmv and at the moment we have not placed a property in there.

Multi-threaded Fischer’s algorithm

To test the same properties above that not only verify mutual exclusion but also can ensure some form of
progress we can use what we name a non-deterministic scheduler. That is, the CPU can be awarded to
either thread at any point in time. The NuSMV model is constructed as follows.

make smv-non-deterministic
You now would see the resulting file as FischerDelaysByBooleanSensors-non-deterministic.smv. To
check all the properties in the file ltl-properties.nusmv we use the following target.

make test-properties-non-deterministic
The non-deterministic scheduler places a bound on the number of consecutive turns one of the threads

(one of the LLFSMs) can receive the CPU. With only two threads this guarantees that no thread starves.
However, with 3 threads, one thread can let to starve while the other two share all the turns, and even if
one of those reaches the maximum of consecutive turns, it can pass it on to its partner thread, leaving one
always starving.

There is a third scheduler we have named fair. This scheduler can be used in this example with the
target

make smv-fair
All the properties can now be verified with NuSMV with the following target

make test-properties-fair
However, we show that with an unrestricted scheduler that allows one thread to monopolize the CPU,

there is no progress. Although the property, as expressed by Lamport in his paper, is true, a property
of effectively at least one thread entering and departing their critical section and then their non-critical
section fails. The unrestricted scheduler can provide CPU turns to one thread that stays indefinitely in its
non-critical section. To illustrate this we can build the model with an unrestricted scheduler.

make smv-unrestricted
and then verify the same properties with NuSMV.

make test-properties-unrestricted
and observe the last property is now false.

2.2.3 Using TLA+ specifications

We now show the translation to TLA+ specifications of this example, and the verification of properties with
tlc. The translation is achieved with the following target.

make tla-sequential
This is a translation to a sequential scheduler. Threads receive a turn in round-robin fashion (see Equa-
tion 2.1) below. Now, to test properties using the tlc model check we use the following target

make test-tla-properties-sequential
In the output we should see the line
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Model checking completed. No error has been found.

Besides all the invariants generated by the translation, the verification includes the properties in the file
properties.tla. These properties are a subset of the properties listed in ltl-properties.nusmv since
the logic of TLA+ does not include some operations of LTL (such as X i.e. next, and U i.e. until).

The file properties.tla does not have comments because it needs to be integrated with configuration
files. Also, properties are restricted to be written in only one line.

We can also use tlc to verify properties with a different scheduler.
make test-tla-properties-unrestricted

Here again, the unrestricted scheduler cannot guarantee the last property which is a strong sense of progress,
since it can allocate all the turns to a thread that is waiting for another one.

2.2.4 Running the model

The model can be executed by translating to C (at the moment only under the sequential schedule seman-
tics) using the following target.

make C
Then, the programs ask for one of the four variables that are external variables (and can hold a thread
in its critical and in its non-critical section). The C executable only ask for an external variable when it
needs it and not in every ringlet. Refer to the test.sh on how to compile the resulting translation and
how to run it. In particular, to compile the resulting C code, the make target is as follows.

make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`
The, you can run it as follows

./executables/FischerDelaysByBooleanSensors.exe
Naturally, this execution is with the round-robin (sequential scheduler) of the semantics of an arrangements
of LLFSMs.

Running with MIPS in this example is a before. To translate the model to MIPS, we use
make mips_docker_qemu

Next, we need to compile the MIPS assembly into MIPS executable
make -f $MUSL_MIPS_SCHEDULER_INSTALLATION/MakefileMUSL cfile=`make name`

To run the compiled MIPS code we use the emulator qemu.
qemu-mipsel ./executables/`make name`.exe

Here we can delay each of the two threads as much as we want by answering 0 or 1 (as false or true)
to whether they leave their critical section or whether they leave their non-critical section (whatever is
the case). A 0 (zero) keeps the thread in the corresponding section, while a 1 indicates the thread has
completed the section and moves on. Abort the program to exit the emulation. Naturally, because of the
formal verification, we are confident you will not be ale to place both threads as executing their critical
section.

2.3 Fischer’s Algorithm with more than two threads
The directory FischerCopies.d has a version of the Fischer’s algorithm that enables to select the number
of threads. For instance, the following target

make dot THREADS=6
generates a visualisation the PDF (via a dot version) of the model where there is only one instance drawn
of a thread but where six copies of these thread are in the arrangement. The number of copies of a LLFSM
in an arrangement is indicated by the appearance of instacnes (6) in the information about one drawing
of the LLFSM.
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2.3.1 Verifying mutual exclusion with NuSMV

To verify using NuSMV mutual exclusion we can construct the NuSMV model.
make smv-sequential

or
make smv-sequential THREADS=6

if we want a different number of threads from the default in the Makefile. We use sequential to indicate
that the scheduler is the round-robin scheduler that provides a turn to each thread sequentially with

turn← (turn+ 1) mod (] of threads) (2.1)

This NuSMV model can be simulated with NuSMV and you can elect the sensor variable that determines
which thread gets the CPU as follows.

make smv-unrestricted THREADS=3
NuSMV -int FischerCopies-unrestricted.smv
go
pick_state -r
simulate -i -k 100 -c "(Sensor.Non_Critical_Section_Delay = TRUE)

& (Sensor.Critical_Section_Delay = TRUE)

From there on, you interactively chose to allocate the turn to one of the three threads.
To test the mutual exclusion property there is a version where the file ltl-properties.nusmv is

constructed as part of the build and the translation.
make test-properties-sequential THREADS=6

However, there is also a brief version. This version uses index variables in the LTL of NuSMV.
make test-properties-succinct-sequential THREADS=6

However, the interesting case is when the CPU is awarded arbitrarily to the any thread without any
restriction.

make smv-unrestricted THREADS=6

Now, the mutual exclusion property is showing that property at its full power.
make test-properties-unrestricted THREADS=6

2.3.2 Verifying mutual exclusion with tlc

The target to verify the same mutual exclusion property with tlc and the sequential scheduler (Equa-
tion 2.1) is as follows.

make test-tla-properties-sequential THREADS=7

It is also possible to verify with tlc mutual exclusion for the unrestricted scheduler. Warning, de-
pending on your computer this may take several minutes.

make test-tla-properties-unrestricted THREADS=7

ToDo: Show mutual exclusion for the other two schedulers (fair and bounded) and then show lack of
progress with unrestricted scheduler with NuSMV and TLC.

ToDo: Show execution for C and for MIPS.

2.4 The schedulers as LLFSMs and their properties
The behaviour of the different schedulers (and therefore their properties) can be also analysed using the
modelling with LLFSMs, and the corresponding translation tools. The examples of the schedulers are in
the directory SchedulersForLLFSMs.d.
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2.4.1 Unrestricted scheduler

Unrestricted scheduler

The first scheduler we will illustrate is the most flexible one where at any point, any thread can be awarded
the CPU. The model for this scheduler is in SchedulersForLLFSMs.d/UnrestrictedScheduler. To use
dot to visualise the scheduler as a state machine:

make dot
If you open the PDF file you should get the following image.

Arrangement of LLFSMs ||** UnrestrictedScheduler **||. The llfsms = (M_Unrestricted_Scheduler)

 Integer Sensor =  [ (keep_CPU:1..num_threads)]

 Integer Whiteboard =  [ (the_Turn:0..num_threads)]

 Constants =  [ num_threads=4]

 M_Unrestricted_Scheduler(ID:0) turn(0) 

 Whiteboard Variables in LHS =  [ the_Turn]

 WB in LHS Owner =  [ the_Turn]

 Local Integer =  [ ]

 Local Whiteboard =  [ ]

dInitM_Unrestricted_Scheduler(0)

On Entry:

On Exit:

Internal:

STARTER(1)

On Entry:
the_Turn ::= 0

 1:[true](Tid:00) 

Thread1Turn(2)

On Entry:
the_Turn ::= keep_CPU

 1:[true](Tid:01)

 1:[true](Tid:02)

Figure 2.2: The unrestricted scheduler.

Running the unrestricted scheduler

Like all arrangements of LLFSMs, the model of the unrestricted scheduler is executable, and we can
produce the LISP model.

make lisp
And then run it

source `make name`.sh 2> junk
Running it with LISP shows another aspect of the old semantics where states included sections (see
Section 3.4). In that old semantics, a transition that fires only causes the execution of the OnEntry
section of the target state if the source is a different state. So when running this with LISP, the variable
the_Turn does not get updated although the sensor variable keep_CPU is receiving a different value. Under
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the LISP execution, only when the LLFSM moves from the state STARTER to Thread1Turn that the variable
the_Turn is updated. We prefer the more uniform semantics that a transition that fires always causes the
OnEntry section code to execute, since it applies across LLFSMs where states have sections as to LLFSMs
where states have no sections. Moreover, it is visually more intuitive. Figure 2.2 illustrates this point: the
transition Tid:02 in the LISP semantics, although targets a state with an assignment, when it fires, it
never causes the execution of the assignment!

We can also translate this model to C and run it with the proper semantics of LLFSMs. The target
make C

will perform the translation. In the file test.sh we see the command to compile.
make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

Now, to execute the C compiled file we issue the following command.
./executables/UnrestrictedScheduler.exe -v

The -v option run the executable model in verbose mode, and thus shows the value of whiteboard variables
after each schedule completion. The value supplied (the reading of the environment in a sensor variable)
can be any integer in {1, . . . , 4} by the default set in the Makefile If a larger number of threads is desired,
we need to translate with a parameter. For example, if we want to share the CPU among 7 threads:

make C THREADS=7

And then we compile as before.
make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

Thus, in this example and with the -v option, we see the effect of supplying a value in the sensor1.
and how it changes the variable the_Turn. The execution shows that any thread can be the next thread
at the next turn.

Properties of the unrestricted scheduler

The unrestricted scheduler has the property that

at any time, any thread in the future can have a turn.

To show this is true for thread 1 we use the following property in CTL.

AG (EF w_b.the_Turn = 1)

It can be verified with the following target
make test-properties

as is a property in the file ctl-properties.nusmv. You will notice that we can use variables in NuSMV
to prove the property in general for all threads.

VAR
-- i and arbitary thread
i : 1..g_c.num_threads;

CTLSPEC
AG (EF w_b.the_Turn = i)

Also, in this scheduler we can have starvation as

with two or more thread, there is a path that does not never awards a turn to thread i, for all i.

We show this by a CTL property that NuSMV shows to be true.
1Sensor variables allow to model non-deterministic variables, or variables the system does not have control, such as

environment variables. In this case we are modelling that the CPU is awarded arbitrarily.
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CTLSPEC
EF (EG w_b.the_Turn = 1)

This says the in all paths to some state S0, eventually after S0 there is a later state SL from where we
should be in a state where the_Turn = 1 and also globally afterwards.

In LTL we must show starvation by false properties where NuSMV responds that the property is
false and shows a path where the computation never awards a turn to a different thread. The file
ltl-false-properties.nusmv has the following LTL properties.

LTLSPEC
G ( F w_b.the_Turn=1)

LTLSPEC
G( w_b.the_Turn=2 -> F (!(w_b.the_Turn=2 ) ))

The first one says that, no matter what state, eventually thread 1 will have a turn (false since this scheduler
can award the turn for ever to other threads). The second one says that, no matter what state where the
turn is given to thread 2, eventually it will be taken away from thread 2 (false because the turn can be
awarded to thread 2 for ever). To run the verification of this properties and see in log files the counter-
example generate by NuSMV use the following target.

make test-false-ltl-properties

2.4.2 Restricting repetition of turns

We now present a scheduler that limits the number of consecutive turns awarded to one particular thread.
The diagram in Figure 2.3 presents a generic form of the scheduler. The variable keep_CPU is a sensor
variable used to represent which thread (is requesting) the CPU. The variable keep_CPU is not in the
sphere of control of the scheduler. The scheduler does not handle queues of requests. These schedulers
are to manage an arrangement of LLFSMs as a multi-threaded system or a distributed system simulation
(assigning which is the next machine to advance). They do not reserve turns to a thread because it has
been requested in the sensor variable more. Simply, they model the non-determinism of the next turn
when the LLFSMs in the arrangement are allocated to different CPUs.

The variable the_Turn is the thread to which the scheduler assigns the CPU. Thus, every time the
scheduler assigns a value of a thread to the_Turn, that thread is being awarded the CPU. The strategy
of this scheduler is concentrated in the transition from the state starter’s turn to the state thread i’s
turn. Namely, if thread i demands the CPU and the scheduler has not awarded this thread a maximum
number of consecutive turns, then thread i is awarded the CPU. However, if thread i demands the CPU
but this thread has had a maximum of consecutive turns, then we find some other thread j that has not
reached the maximum number of consecutive turns, and j is awarded the CPU. Along the presentation of
this example, and its formal verification, we will establish that, for example, such a j always exists if the
number of threads is 2 or more.

We take this opportunity to highlight something about the semantics of LLFSMs. When Boolean
expressions labelling a transitions are a disjunction, they are evaluated in short circuit mode (also called
minimal evaluation or McCarthy evaluation). That is, and expression such as A ∨ B is determined true
once A is found to be true and B is not evaluated. Also, since transitions out of the same source state are
in a sequence and thus evaluated in the prescribed order of the sequence, disjunctions are equivalent to a
set of transitions with common source state and target state but each labelled by one of the disjunction
terms. Figure 2.4 shows the equivalent LLFSM to Figure 2.3 where the disjunction is replaced by two
transitions. Figure 2.3 and Figure 2.4 are using a Booleans expression with an exists operator. This
use of ∃ is indeed shorthand notation for a loop that iterates over the range of the variable local i, and sets
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initial
∀i consecutivei ← 0

starter’s turn
theTurn← 0

thread i’s turn
theTurn← i

consecutivei ++
∀j 6= i consecutivej ← 0

true

true

∃i ∈ {1, . . . , t}|( (keep_CPU == i) ∧ (consecutivei < MAX) )∨
∃i ∈ {1, . . . , t}|(consecutivei < MAX)

Figure 2.3: A scheduler encoded as an LLFSM (the integer MAX is the maximum number of consecutive
turns for a thread, and keep_CPU ∈ {1, . . . , t} non-deterministically decides which of the t threads grabs
the CPU).

initial
∀i consecutivei ← 0

starter’s turn
theTurn← 0

thread i’s turn
theTurn← i

consecutivei ++
∀j 6= i consecutivej ← 0

true

true

T
1:∃

i∈
{1,...,t}|(consecutive

i
<

M
A
X
)

T
0:∃

i∈
{1,...,t}|(

(keep_
C
P
U

=
=

i)∧
(consecutive

i
<

M
A
X
)
)

Figure 2.4: Equivalent LLFSM to Figure 2.3 where ordered transitions are used to express the short circuit
evaluation of disjunctions.
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initial
i← 1

test

increment i++

true
T0:( (keep_CPU == i) ∧ (consecutivei < MAX) )

T1:true T0:i > tT1:true

Figure 2.5: The expression ∃i ∈ {1, . . . , t}|( (keep_CPU == i) ∧ (consecutivei < MAX) ). is really a
fragment of an LLFSM.

initial
∀i consecutivei ← 0

starter’s turn
theTurn← 0

keep_CPU ∈ {1, . . . , t}
i← keep_CPU

thread i’s turn
theTurn← i

consecutivei ++
∀j 6= i consecutivej ← 0

i← 3

i← 2

i← 1

.........
i← t

true

T0:(consecutivei < MAX)

true

T1:consecutive1 < MAX true
T2:consecutive2 < MAX true

T3 : consecutive3 < MAX true

Tt : consecutivet < MAX

true

Figure 2.6: A scheduler encoded as an LLFSM (the integer MAX is the maximum number of consecutive
turns for a thread, and keep_CPU ∈ {1, . . . , t} non-deterministically decides which of the t threads grabs
the CPU).

i to the first value that satisfies the qualified predicate. Figure 2.5 illustrates the corresponding fragment
of the LLFSM that corresponds to

∃i ∈ {1, . . . , t}|( (keep_CPU == i) ∧ (consecutivei < MAX) ).

Once again this enables us to underline an important issue of the semantics of LLFSMs. This issue is
regarding the appearance of the variable keep_CPU in transitions out of the state starter’s turn in both
Figure 2.3 and Figure 2.4. All transitions out of a state are evaluated in a snapshot of the environment
where sensor variables are read only once and then included with a fixed value in the context where all
the transitions are evaluated (see Section 3.8. Thus, the expression (keep_CPU == i) changes the value of
i along the range of the sensor variable, but keep_CPU has a constant value over all transitions out of the
state starter’s turn until a transitions is deemed to fire or no transition fires.

Figure 2.6 presents another illustration of this scheduler, that removes the need for the operator ∃ but
then uses an enumeration with several dots.

Note that the variables consecutivei for i ∈ {1, . . . , t} could be structured as an array. However, at the
moment, the prototype does not offer facilities for LLFSMs with arrays. Thus, we will start by presenting
the version for two thread. The examples that follow are in subfodler of the folder CapConsecutiveTurnsScheduler.

Two threads with turns capped to a maximum

This example is in the folder
LLFSMTransformationExample

Examples
OutputOnlyPingPongTikiTaka.d
RealTimeBounds.d
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Fischer.d
FischerCopies.d
Microwave.d
TimedExpresion.d

SchedulersForLLFSMs.d
CapConsecutiveTurnsScheduler

TwoThreadsCapConsecutiveTurnsScheduler
So, move to the folder TwoThreadsCapConsecutiveTurnsScheduler. Like always, we can obtain a

visualisation of the model with the target
make dot

Figure 2.7 presents the diagram for the case of two threads when we translate to dot.
There are a few aspects in which the generic form presented in Figure 2.3 and the instance of two

threads of Figure 2.7 differ. The first is that the generic form Figure 2.3 always alternates a turn to
thread 0 with any other thread. Here we have preferred to give only one turn to thread 0 as with the
unrestricted scheduler of the previous section. This makes no difference for examples such as the Fischer
algorithm that needs some initialisation, performed by a starter machine in the first position (that is
position 0). Because such initialisation is in the LLFSM in position 0 and then reaches a terminal state, a
turn alternating with other machines is a void turn as there is nothing to do.

Another aspect is that Figure 2.7 is the state RESET. This state is somewhat redundant and the tran-
sitions out of the states Thread_1_Turn and Thread_2_Turn could be arranged between each other. We
believe the current display of the scheduler is clearer, although the behaviour in Figure 2.7 will update the
variable the_Turn every two turns of the simulation when translated. Once for the corresponding thread
assigning state (Thread_1_Turn or Thread_2_Turn) and once for the state RESET.

We can run this scheduler in LISP, first translating the model of Figure 2.7 with the target
make lisp

Then, as per the indication of the file test.sh, we run it with
source `make name`.sh 2> junk

We now supply to which thread we award the CPU (warning that as explained before this takes effect
when the simulation is the state RESET). However, a quick way of observing the behaviour of the scheduler
is to repeatedly in pairs provide the value 1 to the variable KEEP_CPU. If you constantly provide the value 1,
you will see the variable the_Turn takes the value 1 and the variable consecutive_1 increments until it
reaches 4. At that time, a turn is awarded to thread 2 and we see the_Turn take the value 2. Playing with
the simulator you shall become convinced you cannot starve a thread. Similarly if you run the C version
by using the target

make C
This produces a file with extension .c that must be compiled as indicated by the test.sh file.

make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

Recall that to see the effect on the whiteboard variable the_Turn you should run the C program in verbose
node with the option -v.

./executables/TwoThreadsCapConsecutiveTurnsScheduler.exe -v

In this case that the variable the_Turn is updated every two loops but since we are queried for the sensor
variable when needed, the change seems immediate.

In the current version of the prototype translation to MIPS not all aspects used by this scheduler (such
as a Boolean expression to test the equality of two arithmetic expressions). Therefore we do not execute
this scheduler in MIPS.

We move on to the formal verification using NuSMV. The target
make smv
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Figure 2.7: The scheduler of Figure 2.3 in the case that the number of threads is 2.
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produces the NuSMV model and check fundamental properties, such as in being a deadlock-free model.
We now verify similar properties as before. The properties that it is possible for each thread to have a
turn remain true (see the corresponding file ctl-properties.nesmv). First for thread one.

AG (EF w_b.the_Turn = 1)

and in general:

VAR
-- i and arbitrary thread
i : 1..2;

CTLSPEC
AG (EF w_b.the_Turn = i)

However, now the property that showed starvation is false. For thread 1 is as follows.

EF (EG w_b.the_Turn = 1)

For thread 2 is as follows.

EF (EG w_b.the_Turn = 2)

Now these are in the file ctl-false-properties.nusmv and we use the target
make test-false-ctl-properties

Analogously with LTL. The properties that showed starvation for the Unrestricted Scheduler are now
true. For example, we can present a property for showing that at any time, eventually thread 1 gets a
turn.

G ( F w_b.the_Turn = 1)

This one and other LTL are also verified with the target
make test-properties

The NuSMV verifier shows the following two properties are true.

G (w_b.the_Turn = 1 -> F w_b.the_Turn = 2)
G (w_b.the_Turn = 2 -> F !(w_b.the_Turn = 2))

We can also verify some of the LTL properties with tlc. The file properties.tla has the following
content.

[] <> ( the_Turn=1 )
[] <> ( the_Turn=2 )
[] ( the_Turn=2 ~> <> (~ (the_Turn=2)) )

To build the TLA model, we issue the following command.
make tla

To build the TLA model, the configuration file with the properties is the file properties.tla and to
run the verification, the command is as follows.

make test-tla-properties
Thus, with tlc we know that

1. no matter where is the computation, eventually thread 1 will get a turn,

2. no matter where is the computation, eventually thread 2 will get a turn, and

3. every time thread 2 has a turn, then eventually it will lose it.
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Figure 2.8: The scheduler of Figure 2.3 in the case that the number of threads is 3.
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Three threads with consecutive turns capped

Figure 2.8 shows the case where the scheduler handles three threads. Again, we can obtain visualisation
by translating the model to dot. The following command produces the visualisation in Figure 2.8.

make brief-dot
We can execute this model with lisp by translating to lisp.

make lisp
And also we can translate to C.

make C
With this scheduler, it is possible to assign turn to any thread.

make test-properties
we can verify

AG (EF w_b.the_Turn = i)

The important aspects that this model shows is that we can verify two types of properties.

No monopolysation : As opposed to the unrestricted scheduler where a thread could monopolise the
turns for ever, this scheduler, independent of the number of threads does not allow for a single thread
to grab all the turns. For instance, with the target

make test-false-ctl-properties
shows that the following property is false.

EF (EG w_b.the_Turn = 1)

If it were true, then at any point, there would be a way to find the start of a path that always awards
all the turns to the first thread.

Possible starvation : Now that there are more then two threads, it is possible to starve a thread (as
the turns can be alternated by two thread without reaching their maximum number of consecutive
turns). We can verify that at every point, there is always a computation that avoids awarding a turn
to thread one. The target

make test-false-ltl-properties
shows that NuSMV finds false the following LTL formula.

G ( F w_b.the_Turn = 1)

The target will produce a log file where we can find a path of computation where thread 2 and thread 3
alternate the turn for ever, and thus thread 1 is never awarded a turn.

Model with three threads

In is not immediate that the general form of this scheduler, shown in Figure 2.3, is correct in its intent.
Note that the transition says that as soon as we find an i such that there is j 6= i, where thread j has
reached the maximum number of consecutive turns, we can assign the next turn to thread i.

The question is, how do we know that thread i has not also reached its maximum number of turns.
The justification seems to be that, when a thread j is the first one to reach its maximum number of turns,
it does so and all others get their counter set to zero. Then, some other thread gets the next turn (say
i) and j’s counter goes back to zero. Any thread that gets a turn sets the others’ counters to zero. This
seems to suggest there is never a state where two threads reach the maximum number of turns. This is
something we should verify with the model checkers.

In the folder ThreeThreadsCapConsecutiveTurnsScheduler the file ltl-properties has the prop-
erty:
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G ( X (M_Cap_Turn_Scheduler.consecutive_1 = g_c.Max_Consecutive) ->
( ! (X (M_Cap_Turn_Scheduler.consecutive_2 = g_c.Max_Consecutive) )
& ! (X (M_Cap_Turn_Scheduler.consecutive_3 = g_c.Max_Consecutive) )
)

)

This LTL property indicates that, always, at least for thread 1, except for the initial Kripke-state, if this
thread reaches its maximum number of consecutive turns, the other two threads do not reach the maximum
number of threads. Analogous LTL formulas for the other two threads appear in the file ltl-properties.
Thus, always, if a thread has reached its maximum number of consecutive turns, there is always another
thread that has not reached its maximum number of consecutive turns. Another way to express a virtue
of this scheduler is as follows.

G (
M_Cap_Turn_Scheduler.consecutive_1 = g_c.Max_Consecutive

-> X(X(M_Cap_Turn_Scheduler.consecutive_1 = 0))
)

Always, in no more that two Kripke states after tread 1 has reached its maximum number of consecutive
turns, another thread has a turn, and thread 1 does not have the next turn (as its consecutive turns goes
down to zero).

We can use the translation to TLA.
make tla

And then, with the following command we prove analogous properties with TLC.
make test-tla-properties

The properties verified are in the file properties.tla. Recall that, because of the restrictions of the TLC
tools they must be written in a single line

[] ( the_Turn=1 ~> (the_Turn=2 \/ the_Turn=3 ) )
[] ( the_Turn=2 ~> ~(the_Turn=2) )
[] ((~(M_Cap_Turn_SchedulerState = "dInitM_Cap_Turn_Scheduler") /\ M_Cap_Turn_Scheduler_consecutive_1 = Max_Consecutive)

=> (M_Cap_Turn_Scheduler_consecutive_2 = 0) )

[] [M_Cap_Turn_Scheduler_consecutive_1 = Max_Consecutive
=> M_Cap_Turn_Scheduler_consecutive_1’ = 0

]_M_Cap_Turn_Scheduler_consecutive_1

The first one is plain LTL and says that always, if thread 1 has a turn, eventually one of the two other
threads (thread 2 or thread 3) will have a turn. Similarly, the second one says that if thread 2 has a
turn, then eventually it will not have a turn (thus, threads cannot monopolise the CPU). The third one
also says that, always, except for the pseudo-initial kripke state, if thread 1 has reached its maximum
umber of turns, then thread 2 (it could be thread 3) has had no turn. The last one is a bit different
than standard LTL, but says that always, eliminating stuttering states in the projection of the variable
M_Cap_Turn_Scheduler_consecutive_1, if thread 1 reaches its maximum number of state, the next value
it will have is zero (and thus another thread received a turn).

More than three threads

The folder kThreadsCapConsecutiveTurnsScheduler has a model with up to five threads. The purpose
of this model is to illustrate the features of the scheduler guided by capping the consecutive turns. Since
our current prototype does not support arrays of integers, the number of states is unnecessarily large.
The point is to illustrate that the design of this scheduler generalizes and that it can be incorporated
as part of the translation of a multi-threaded algorithm (like Fischer’s mutual exclusion) for both, the
implementations (say to C) of for verification (smv or TLA+).

The model can be translated to LISP with the following command.
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make lisp

Then it can be executed as with all our LISP translations.
source `make name`.sh 2> junk

Running the LISP version is a bit slow because every transition in the model request the values of the
sensor variables even if they do not affect the coming transition. However, it has the advantage that the
execution displays all variables (including local variables). With the C translation, the amount of output
of the execution can be regulated and the interaction is also only when the sensor variable is needed. We
translate to a C executable as follows.

make C

We need to compile as before.

make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

We can run with no command line arguments.
./executables/kThreadsCapConsecutiveTurnsScheduler.exe

We can supply a choice of thread repeatedly, for example, when the execution ask
The SENSOR variable *> keep_CPU <* with range [1,5] is read now:

we can supply the value 1 five times. We will notice that the first four, the turn is awarded to thread 1
but the fifth time, among the output we see

This is the moment *> the_assigned_turn <* is given the value 2

You can experiment and you will notice that you cannot award more than four consecutive turns to a
thread, and if you arrive to the maximum number of consecutive turns of thread 2 or a larger numbered
thread, then thread 1 gets a turn. Also, the scheduler awards a turn to thread 2 if thread 1 is requested
for a fifth consecutive turn.

With the command
make test-properties

a series of properties in LTL and CTL are verified with NuSMV. For instance

VAR
-- i and arbitrary thread

i : 1..5;
CTLSPEC
AG (EF Effector.the_assigned_turn = i)

is shown to be true. That is, always, no matter what state, it is possible to eventually award the turn to
any thread. But it is also possible to show that a thread may starve.

make test-false-ltl-properties

shows that the property

G ( X ( F Effector.the_assigned_turn = 1))

is false. Thus, no matter what state, the computation from there can starve thread 1.
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2.4.3 The fair scheduler

We achieve a scheduler that has freedom for the threads (any thread can be requested next) like the
unrestricted scheduler, and also guarantees no starvation on any thread. Recall that the freedom of the
unrestricted scheduler came with the price that threads could starve (even with only two threads). The
previous scheduler that capped the number of consecutive turns allows any thread to be requested and
avoid starvation but only for two threads (three or more threads resulted in the possibility of starving a
thread). In this section, the scheduler will never starve a thread for an arbitrary number of threads (and
yet any thread can be requested at any time).

This scheduler caps the maximum number of times a thread i has been waiting. That is, every time
the turn is assigned to another thread, the value of waitingi increments by one. The scheduler iterates
over two phases when assigning a turn.

First Phase : It checks if there is a thread i that has been waiting beyond MAX_WAIT (a constant that
indicates the tolerance to have a turn).

• If there is i with waitingi greater or equal thanMAX_WAIT, the scheduler assigns the turn to i
no matter what thread was requested.

the_Turn→ i

• otherwise, the requested thread gets the turn.

the_Turn→ requested thread

Second Phase : For all threads j that did not get the turn in Phase 1, their waiting counters increases.

waitingj → waitingj + 1

while the thread that got the turn has its counter reset.

waitingthe_Turn → 0

We have two implementations of this scheduler in our examples. These two implementations are in the
folder CapWaitingTurnsScheduler.

LLFSMTransformationExample
Examples

OutputOnlyPingPongTikiTaka.d
RealTimeBounds.d

Fischer.d
FischerCopies.d
Microwave.d
TimedExpresion.d

SchedulersForLLFSMs.d
CapConsecutiveTurnsScheduler
CapWaitingTurnsScheduler

ThreeThreadsCapWaitingTurnsScheduler
kThreadsCapWaitingTurnsScheduler

The first implementation is the folder ThreeThreadsCapWaitingTurnsScheduler. As the name indi-
cates, the scheduler works with three threads. We can again visualise the model with the command

make brief-dot
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Figure 2.9: Visualisation produced by graphviz when translating a model of the scheduler for three
threads that limits how long the thread has been waiting to get the CPU.
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The graphviz does not produce an image that uses the space well; thus the readability of the text in
Figure 2.9 is limited.

We can run this scheduler in LISP by translating the model to LISP.
make lisp

We then run the resulting translation as follows.
source `make name`.sh 2> junk

When you run the LISP scheduler you are asked for values of the sensor variables after each ringlet is
executed. Thus, you will be asked for the value of KEEP_CPU (by default LISP convert variables to all
upper-case letters). Although only at one point the sensor variable is used. Repeat a value in {1, 2, 3} and
you will see the variable THE_TURN (it will show in the section WHITEBOARD-VALUES of the output)
change to your input value. Also, in the section LOCAL-VALUES, you will see the values for WAITING_1
WAITING_2 and WAITING_3. You will notice that even if you persist with a fixed value for many times, once
a waiting variable reaches 4, the value of the variable THE_TURN will change to this, showing the thread
that has waited long enough gets a turn. You can translate the model changing the parameter of how long
to wait. For example,

make lisp MAX_TURNS=6

will make translation where now thread has to miss 6 times being awarded the turn. However, you cannot
make a thread starve, all eventually get a turn.

The same model can be run with C.
make C

We need to compile using the same command as before.

make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

We recommend you run it in verbose mode (option -v) so you can see the values of the assigned turn in
the whiteboard variable the_Turn.

./executables/ThreeThreadsCapConsecutiveTurnsScheduler.exe -v

Now for verification, you can run a NuSMV check for similar properties as before.
make test-properties

Moreover, we now cannot starve a thread, so a property that a thread may never has a turn is false.
make test-false-ctl-properties

In Section 3.1 we will see that there are two types of real-time properties. First, those properties that
guarantee that it is not to long before something happens. The second type are those properties that
guarantee that something has at least a minimal duration. With the following LTL property in NUSMV
we check that always, if thread 1 does not have a turn, then thread 1 will have a turn after a maximum of
11 Kripke states.

LTLSPEC
G ( -- At all future states:

(! (w_b.the_Turn=1)) -- if thread 1 does not have a turn,
-> -- then:

(F[0,11] -- after a maximum of 11 transitions,
w_b.the_Turn=1 ) -- thread 1 has a turn.

)

This shows not only that a thread will eventually have a turn (and not starve), but exactly how long will
it have to wait (in Kripke states, or ringlet executions, which can be bounded my finding the maximum
execution time of all ringlets in the model of the scheduler).

For a real-time property of the second type we have the following LTL property for NuSMV.
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G ( -- At all future states :
( (! (w_b.the_Turn=1)) & X ((w_b.the_Turn=1) ) ) -- if thread 1 just got a turn

-> -- then
( H[0,1] -- it has been waiting
(! (w_b.the_Turn=1)) -- without a turn

)
)

This property says that a property always waits at least one Kripke state to get a turn.
The second example of this fair-scheduler is a generalisation to k threads in the example under the folder

kThreadsCapWaitingTurnsScheduler. However, the example is only of five threads because our prototype
does not have an array of integers. However, NuSMV and TLA+ do have them and our translator can
generate this scheduler as it translated the arrangement because at that stage the number of machine in
the arrangement is known. We invite you to generate the PDF of the model with the command

make brief-dot
and inspect the resulting file

kThreadsCapWaitingTurnsScheduler-brief.pdf

You will see integer variables waiting_i, for i = 1, . . . , i, which could be implemented as an array.
You can generate an executable for LISP.

make lisp
And execute the resulting translation as follows.

source `make name`.sh 2> junk
This time the output variable of the scheduler is THE_ASSIGNED_TURN and is shown with all other variables.
Running the lisp version is a bit tedious because again an input is requested in every ringlet although it
only matters in one state.

Thus, we suggest you run the C version.
make C

We need to compile using the same command as before.

make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

Run it without any verbose option.
./executables/kThreadsCapWaitingTurnsScheduler.exe

You will still have to input at least five times a value for keep_CPU that is not relevant because the model
loops around the five threads to update the waiting variable of each. The C scheduler needs to build the
context in case the execution goes to the state RESET.

However, the interesting aspects are the properties. The command
make test-properties

verifies, with NuSMV for each thread i ∈ {1, . . . , 5}, properties of the form

G (!(Effector.the_assigned_turn = i) -> F Effector.the_assigned_turn = i)
G !(M_Cap_Waiting_Scheduler.waiting_i > g_c.MAX_WAITING)

That is, always, if thread i does not have the turn, it will eventually get it. While the second one is
unnecessary because the model has already defined the range of waiting_i we place it here because it
may give the impression that a thread will never have to wait more that the constant g_c.MAX_WAITING.
The model does not increase waiting_i any more once it has reached g_c.MAX_WAITING.

However, this enables us to have a parameterised model you can extend how long a thread waits.
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make test-properties MAX_WAITING=6

With MAX_WAITING=4 (the default in the Makefile), we can also produce the two types of real-time properties
for this case.

LTLSPEC
-- Globally/Always, a thread that does not have a turn, will have a turn
-- after a maximum of transitions
G ( -- At all future states:

(! (Effector.the_assigned_turn=1)) -- if thread 1 does not have a turn,
-> -- then:

(F[0,104] -- after a maximum of 104 transitions,
Effector.the_assigned_turn=1 ) -- thread 1 has a turn.

)
--
LTLSPEC
-- Globally/Always, a thread waits at least
G ( -- At all future states :

( (! (Effector.the_assigned_turn=1)) & X ((Effector.the_assigned_turn=1) ) ) -- if thread 1 just got a turn

-> -- then
( H[0,2] -- it has been waiting
(! (Effector.the_assigned_turn=1)) -- without a turn

)
)

You can test these two properties with the command
make test-realtime-properties
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Chapter 3

Real time properties

3.1 Real-time-properties
According to Leslie Lamport there are two types of real-time properties.

Upper-bound type of property: If we reach a state s0, then in no longer than k steps, property P will
hold in all further states.

Lower-bound type of property: From the instant we reach state s0, property P will hold globally in
all states in at least the next k steps.

The upper-bound type of property indicates that the system assures that after X steps, the property P
will hold (once we reach s0). It is stronger than the eventually operator of temporal logics because it
explicitly says that P will hold in k or fewer steps.

Similarly for the lower-bound type of property, which ensures a minimum number of steps during which
P will hold.

We aim here to illustrate the formal verification of these two types of properties from of executable
models. We start with a simple example to also illustrate timed-transitions in LLFSMs, and then we
proceed with a realistic example widely discussed in the literature.

3.2 Real time properties with a simple LLFSM
A simple LLFSM with a timed-transition is the example in the directory TimedExpresion.d of the path
LLFSMTransformationExamples/Examples/RealTimeBounds.d. The arrangement is named TimedExpresion
and has only one LLFSM named Only. Figure 3.1 shows the result of generating a visualisation from the
executable model with the corresponding target.

make dot

3.2.1 Executing with LISP

This model is executable. For a version is LISP we use the familiar target.
make lisp

Moreover, if we run it,
source `make name`.sh 2> junk

we will notice that the transition from INITIAL to OTHER is, to our human eyes, instantaneous. However,
it is noticeable that the transition from OTHER to INITIAL takes two or more seconds. This is because in
the LISP version the units of the after predicate are seconds. The semantics of the after predicate is
that it becomes true only after the next turn is awarded to the LLFSM (a timed transition is always false
the first time even if after(0) is used), and at least as many units have passed since entering the source
state of the timed transition.
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Arrangement of LLFSMs ||** TimedExpresion **||. The llfsms = (Only)

 Only(ID:0) turn(0) 

 States Source of Temporal Transitions =  [ OTHER]

dInitOnly(0)

On Entry:

On Exit:

Internal:

INITIAL(1)

On Entry:
write "In INITIAL"

 1:[true](Tid:00) 

OTHER(2)

On Entry:
write "In OTHER"

 1:[true](Tid:01)  1:[(AFTER 2)](Tid:02)

Figure 3.1: A LLFSM named Only with a timed transition.
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3.2.2 Executing with C

The same model and with the same semantics can be executed in C. The target
make C

translates it to C, and the file test.sh has the following illustration on how to compile it
make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

Then, we run it observing a very similar effect than the LISP versio.
./executables/TimedExpresion.exe

3.2.3 Executing with MIPS

Once more the same model can be translated into a model to text transformation with the corresponding
target.

make mips
The, the file test.sh has the illustration on how to run it.

java -jar $MARS_HOME/Mars4_5.jar `make name`.asm
The execution also has the effect that the transition from INITIAL to OTHER seems instantaneous but the
other way around takes some time. In the MIPS version, arrangements do not run forever; the simulation
has always a limit.

3.2.4 Verification of lower-bound properties and upper-bound properties

The temporal logic TLA+ offers a subset of LTL where X (next) and U (until) do not exists. However, we
can still use TLA+ to verify some temporal properties of this simple executable model. The target

make test-tla-properties
produces a translation and invokes the model checker tlc on a couple of properties. The properties are in
the file properties.tla and say that

1. the state INITIAL for the machine Only occurs infinitely often in the future.

2. the state OTHER for the machine Only occurs infinitely often in the future.

Thus, LLFSM Only cannot remain in only one of the states.
We do not claim that NuSMV is more expressive than TLA+, but at least for the properties we want

to illustrate here, our experience is that NuSMV is more accessible. In particular, we can formulate
more properties in LTL and CTL. For example, the file ltl-properties.nusmv shows properties that are
stronger than the two above properties because we show that INITIAL must be followed by OTHER and vice
versa (so now we know there are only two states in the future for sure). Moreover, we can also explicitly
verify that the transition from INITIAL to OTHER occurs infinitely often in the future and that so does the
transition from OTHER to INITIAL. The formulation of these properties in NuSMV uses X and U and they
seem particularly laborious if at all possible in TLA+.

So far these properties are not real time properties as we promised. However, the file ltl-realtime-properties.nusmv
has both types (upper-bound and lower-bound) real time properties. All properties are verified with the
target

make test-properties
For example,

G (Only.At_INITIAL -> F[0,2] Only.At_OTHER)

is an upper-bound type of property saying that the LLFSM Only will never remain at the sate initial for
longer than two steps.

Examples of lower-bound properties are also in this file.
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G ((Only.At_OTHER & X Only.At_INITIAL) -> H [0,11] Only.At_OTHER)

Using the history operator H in NuSMV we can say that the LLFSM stays at OTHER for at least 11 states.
This latest lower-bound property has a complementary upper-bound property

G (Only.At_OTHER -> F [0,12] Only.At_INITIAL)

that says also that Only does not stay further than 12 steps in state OTHER.
The file properties.nusmv uses CTL. We also can express here that always everywhere there is a path

that takes the behaviour to INITIAL and analogously to OTHER. But the most interesting aspect is that
the upper-bound properties can also be expressed in CTL (for NuSMV).

AG ((Only.At_INITIAL -> EBF 0..2 Only.At_OTHER) &
(Only.At_OTHER -> EBF 0..12 Only.At_INITIAL))

3.3 Real time properties with the Microwave example
The microwave example is widely discussed in the literature, and we have many references in our papers to
the work of others. It has an important reactive behaviour to the environment; namely, if the microwave
is operating (cooking) and the door is opened, then the cooking must stop. This example is relevant
for real time properties because when we express this in temporal logics it is insufficient that we verify
that the cooking eventually stops but we must show that we can provide a precise bound of when will
the microwave stop. That is, we will show here that the model can be used to determine precisely how
many state changes are required since the sensor is indicating that the door is opened for the cooking to
stop. Naturally, different implementations of the model in different micro-controllers result in different
time measurements for how long is a change of state in the implementation, but this is just a matter of
translating the worst execution time of the state transition to the abstract steps of the model.

The model also illustrates another subtle point. If the sensor for the door indicates the door is opened for
an extremely short amount of time, then while the implementation is executing and examining something
else, such short pulse of the door being opened would be ignored.

Thus, the microwave example is illustrative of the two types of real time properties Leslie Lamport
argues that there are two fundamental types of possible properties one is interested in establishing. First,
properties where all the successors no further than X transitions of one state S0 satisfy a property P .
This is the case that once the door is opened, there is a bound on the cooking being terminated. The
other type of property is that something lasts at least a specified duration. That is, all the states in all
computations after a particular state S0 that are X steps or less, satisfy property P . In the case of the
microwave example, after the cooking is completed, the bell must sound for a minimum amount of time.

The microwave example is in the directory Microwave.d that is the path

LFSMTransformationExamples/Examples/RealTimeBounds.d/.

This example is also parameterised. When the button is pushed and released time is added to the timer.
The amount of time added is called the increment. Figure 3.2 shows the Timer llfsm of this arrangement. In
the state INCREASE_TIMER we see that the current cooking time is increased by the increment when a button
is pushed, and also released (the transition out of INCREASE_TIMER is labelled with NOT button_Pushed).
If the Microwave is already cooking, keeping the button_Pushed prolongs the cooking indefinitely. That
is, the button must be released for the timer to count down. The other parameter is the maximum time
that can be set into the timer. This appears in the transition from DECIDE to INCREASE_TIMER. When the
increment plus current cooking time is equal or larger than the maximum time, the state INCREASE_TIMER
cannot be reached.

Therefore, when translating this example you will be asked to
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Figure 3.2: The llfsm that counts the cooking time in the Microwave example.

Figure 3.3: LLFSM that sets cooking on or off.

Please enter integer value for parameter increment

Also, there is a maximum value the timer can reach. After that, no more time can be added to the timer.
Thus, you will also be asked

Please enter integer value for parameter max_time

We recommend that you use small values for example set the increment to 1 or 2 and the maximum time
to 5 or 6.

Like all other examples, we can produce a visual model with
make dot

The PDF Microwave-regular.pdf will show that the system has for LLFSMs. However,
make brief-dot

produces a slightly smaller drawing. The LLFSMs of the system are as follows. The first LLFSM in the
arrangement controls whether cooking is on and off (Figure 3.3), the second one whether the light is on or
off (Figure 3.4), the third whether the third actuator (the bell) is sounding or not (Figure 3.5). The last
LLFSM control how long the cooking is going to be for (we saw it in Figure 3.2 but Figure 3.6 shows the
list of variables), The cooking cannot happen while the door is open, but opening the door or cooking set
the light on. To add time the door must be closed. Typically, the user should press and release the button
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Figure 3.4: LLFSM that sets light on or off.

to set the desired cooking time with increments. The cooking will start and time will count down until it
is zero and expiration of the time makes the bell ring for two time units. The exception is that opening
the door pauses the timer, and halts the cooking. Once the door is closed again, the timer continues to
count down and cooking resumes.

Thus, this model has two temporal transitions: one in the Bell_Control so the sound is set in state
RINGING and is not silenced until at least two time units have elapsed and the behaviour moves to the
state SILENT. The timed transition in the Timer_Control ensures that at least one time unit has elapsed
before the value in the local variable current_time is decremented.

Timed transitions are implemented by timer-LLFSMs and this can be observed by
make timer-dot

Although only one timer-LLFSMs is shown here, there is one timer-LLFSMs for each timed transition
in the arrangement. When execution arrives to the source state Sc of a timed-transition T , there is
communication between the state machine and a timer-LLFSMs MT for that transition T . The machine
MT counts rounds and the timed-transition T is now a signal from MT that enough time has passed. This
demonstrates that timed-transitions guarantee that at least a certain amount of time has elapsed (maybe
more). Timed-transitions are not fired at exactly some time in the future.

3.3.1 Executable models (LISP, C and MIPS)

Producing executable for LISP

We can now generate the executable LISP with the same target that has been used for this purpose in
earlier examples.

make lisp

As before, you can check test.sh for the ways to provide targets to the Makefile of this example. In
test.sh, there is the command to tun the LISP version.

source `make name`.sh

Now, the LISP executable will ask you after the ringlet of each LLFSM what are the values of the two
sensors of the system, whether the door is opened and whether the button is pushed. That the system
interacts with the environment by these two sensor variables is shown in the summary of variables shown
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Figure 3.5: LLFSM that sets the bell to sounding or silent.
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Figure 3.6: LLFSM that controls the timer.

Figure 3.7: The variables involved in the arragnement of four llfsms of the Microwave example.

in Figure 3.7. The sensor variables are read-only, meaning they cannot be in the left-hand side of an
assignment statement.

Give the value 1 to BUTTON_PUSHED and 0 to DOOR_OPEN (that is keep the button pushed and the
door closed). As you see the CURRENT-MACHINE-ID takes the values 0, 1, 2 and just then you can
release the button (answer BUTTON_PUSHED 0 and DOOR_OPEN 0). Keep this for a while and you will see
the variable TIME_LEFT becomes 1, and so after even further ringlets more MOTOR_ON becomes 1, and one
ringlet after LIGHT_ON 1 also becomes 1. If you keep BUTTON_PUSHED 0 and DOOR_OPEN 0) time will expire,
the motor and the light will come off, the SOUND_ON will become 1 and then more further ringlets later then
SOUND_OFF . Just recall you are being asked for the state of the sensors after the ringlet of each LLFSM in
the arrangement.

Producing executable for C

We can run the same model in C.
make C

To compile for C the file test.sh has the following command.
make -f $PLAIN_C_SCHEDULER_INSTALLATION/MakefileForArrangement cfile=`make name`

This should produce the executable in a subdirectory executables and now you run it with
./executables/Microwave.exe

In this case, the simulation asks you for sensors when it needs to evaluate them (and not every ringlet).
So it will ask you whether the door is open (and not about the button) because the first LLFSMs for
cooking or the lights require whether the door is now open or not. Answer 1 the first time you are asked
for the button to press it, and 0 the second time. Then just answer 0 for both the door being opened and
the button being pushed. Because this adds time, the motor and the light will become on. If you keep
answering 0 to all sensors, then the motor and light will become off, and the sound will be on for a bit and
then off. After this simple trace of the behaviour you can explore any others you like.

Producing executable for MIPS

The translation of the executable model of LLFSMs to MIPS is the standard target.
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make mips

After this, the test.sh shows how to run MARS and the MIPS executable.
java -jar $MARS_HOME/Mars4_5.jar `make name`.asm

In a similar form as in the C execution, you are asked for the two sensors when they are needed. Keeping
the door closed by answering 0 to doot_Open, and then answering 1 to the first request of button_Pushed
followed by answering 0 will add time. Add a few units and then just repeatedly answer 0. You will see
that the microwave cooking and light go on until the time expires, which will result in the bell ringing for
a while before finishing silent. You can then explore adding several units of time and opening the door
when the cooking is going on to see that the cooking is paused.

3.3.2 Verification of properties

The microwave is an example where many properties can be tested. Some LTL properties are checked
using NuSMV with

make test-ltl-properties

ToDo: Miguel said he would check these as some come out false, and it may be that returning false is
correct to show others are not true due to vacuity. Similarly, we can test some other CTL properties

make test-ctl-properties

ToDo: Same issue as before, Miguel said he would check these as some come out false, and it may be that
returning false is correct to show others are not true due to vacuity. And with TLA+ we can also check
some properties

make test-tla-properties

With TLA+ (and using tlc) we can prove desirable properties such as

if the bell is ringing, it will eventually become silent

or

if at the turn of the motor control the doors is open, then eventually the microwave will stop
cooking.

However, since TLA+ is a subset of LTL that does not have X (next) and U (until), it seems difficult to
say that there is a bound for the eventually. However, with NuSMV the two types of real-time properties
can be expressed, and we can check them. The target

make test-realtime-properties

verifies as true the LTL property

G (G [0,9] Sensor.door_Open -> F [0,19] !Effector.motor_on)

This establishes that:

globally (in all future states S0), if the door is open for at least nine consecutive states, then in
no more than 19 states, for all states, cooking will stop.

Thus, we ha proven a real-time property of the upper bound type.
To prove a property of the lower-bound type the earlier target also includes the LTL property

G ((Bell_Control.At_RINGING & X Bell_Control.At_SILENT)
-> H [0,29] Bell_Control.At_RINGING)

This establishes that
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In every state S0 where the bell is ringing and the next state the bell is silent, then in the
previous 29 states, the bell was ringing.

However, a property that speak of the machine and not the effector may seem unsatisfactory. So the same
target also includes the following property.

X ( X ( X ( X ( X (
G ((Effector.sound_on & X !Effector.sound_on)
-> H [0,29] Effector.sound_on))))))

This property says the following.

Provided the software has run for 5 steps, then in any further state S0 such that the sound
is on, but in the next state the sound is off, it is the case that the sound has been on for the
previous 29 steps.

We need the software to run for 5 steps, because the software may start with the sound on, and the software
turns the sound off as soon as possible in this case. If we take away the next (X) operator, it is not always
true that the sound is always on for a long time.

There is a slight challenge with real-time properties that requires attention. Properties may be true by
vacuity. That is, the property may be true because there is never a state S0 with the sound on and the
next state with the sound of. So we must also show that it is possible to reach states with the sound on.
Alternatively, we show that not all paths never have the sound off. The target

test-false-ctl-properties

uses NuSMV to verify CTL properties in the file ctl-false-properties.nusmv. Among these properties
we have the following.

AG !Effector.sound_on

Not only the model checker indicates the property is false, but provides a specific path to a state where
the sound is on. Since the property appears in the fifth position in the file ctl-false-properties.nusmv,
the path is saved in logProp4.txt.

The following property is more explicit about the existence of a path where the sound is on, and later,
eventually, off.

AG !(Effector.sound_on & EX !Effector.sound_on)

Since the model checker indicates the property is false, it shows that the real-time property above is not
true by vacuity, but effectively true. Also, we can check the trace produced in the output.

3.4 The semantics of LLFSMs
Translating arrangements of LLFSMs to NuSMV or TLA+ is providing a semantics for LLFSMs. Histor-
ically, LLFSM’s states were presented as having sections [1, 2]. The idea behind including sections inside
states was to facilitate migration of those familiar with state charts in UML to LLFSMs [3]. Although
LLFSMs could also be introduced to those familiar with UML’s state charts as analogous, but only guards
are used to label transition, this analogy is an over-simplification. Even in this case, the semantics of
UML with only guards is controversial: for instance, when transitions in UML’s state charts are labelled
by guards alone, some suggest [4] that such transitions fire as soon as they become true (which raises all
issues of concurrent execution).

Thus, the first tools that we developed for translating arrangements of LLFSMs to nusmv used ATL [3, 5]
and considered states with sections (OnEntry, OnExit, and Internal). The intuition is that the actions
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(a) A SOURCE_STATE with sections.
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(b) Semantics of a “SOURCE_STATE with sections” with states that have no sections.

Figure 3.8: The semantics of sections in state should be understood as semantic sugar for a complex group
of states and transitions.

in the OnEntry are executed upon arrival to the state (when the state is the target of a transition that
fired), those actions in the OnExit are executed when the state is the source of a transition that fires.
While those actions in the Internal section happen when the turn arrives to the machine and evaluating all
transitions out of the current state does not result in any transition firing. The term ringlet was used [1] for
defining what happens when the round-robin turn returns to a machine and which actions of the current
state (or target state) execute at this turn. However, we have noticed that this description results in a
series of semantic variants or alternatives that complicate the understanding translation [6]. For instance,
a machine must remember if it has executed or not the OnEntry of its current state. Which typically
means that the OnEntry actions are not in the ringlet (turn) when a transition fires. Many more variants
appear when we consider self-transitions. One possibility is for this to execute the OnEntry, the OnEnxit,
both or none, but always skip the Internal section.

Thus, we would argue that is better to formalize the semantics of LLFSMs by specifying it for states
without sections. Thus, in this case a ringlet is much simpler and uniform. All transitions with the current
state as source state (including self transitions) are evaluated in order (they are always in sequence). The
first one to fire causes the execution of the actions in the target state of such transition and the current
state is updated.

If sections are to be used, they are simply syntactic sugar for a more complex group of states as
illustrated by Figure 3.8.

ToDo: Include a folder of examples that illustrate some of this semantic issues.
Moreover, the execution of a ringlet is atomic. That is, no other LLFSM in the arrangement has the

turn, so the firing of the transition and the execution of the OnEntry in the target state happens without
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any changes of any action in any other LLFSMs in the arrangement. If an arrangement of LLFSMs is
to model concurrency in a multi-threaded system or a distributed system, and thus some actions may be
executed in more than one possible order, then this is simply a non-deterministic update of the scheduler
allocating the turn to the LLFSMs in the arrangement.

Since a ringlet consists of the sequential evaluation of the Boolean expression leaving the current state, it
is important to consider the context of this evaluation. Since the meta-model does not allow assignment to
variables as part of a Boolean expression, evaluating a transition can not have side-effects in the evaluation
of the next. However, if a sensor variable appears in more than one position in the sequence of Boolean
expressions out of a source state we consider unsuitable a semantics where the environment could provide a
different value. Therefore, the semantics of this situation is as follows. All sensor variables in the sequence
of Boolean expressions out of a source state are given values (are read) unto a snapshot (a context), and
under this context, all the Boolean expressions are evaluated.

This is consistent with a “snapshot semantics” that was given earlier [5] to LLFSMs where execution of
a ringlet consisted of a preliminary step to any action execution copying all values of variables (whether
shared [whiteboard], read [sensor], written [actuator] or local) to be used while running the ringlet. At
completion of all the actions of the ringlet, the context (which now may contain updates) is copied back into
the arrangement to reflect such updates. The spirit of this semantics is that a system should not depend
on the possibility of the status of a sensor changing during the infinitesimal duration of the execution of a
ringlet. This would either let trough systems with a fault that occurs with extremely low probability, but
would be intrinsically faulty, or complicate enormously the formal verification when the snapshot semantics
solves this.

Note that the semantics proposed here (that a context of all variables to be involved in the actions of
running the ringlet be configured and used during the execution of the ringlet) implies either a construction
at compilation time of and ADT dictionary of variables and associated values, or the construction at
runtime (if LLFSMs are interpreted) with the corresponding run-time cost of dynamic memory allocation.

ToDo:Check that translations to C and MIPS do this for evaluation transitions and the states, the code
progresses for transitions only in C (but not to states)
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Chapter 4

Creating a model using ECLIPSE and EMF

4.1 The necessary SDKs
Since our meta-model for Logic-Labelled Finite-State Machines (LLFSMs) is represented in the Eclipse
Modeling Framework (EMF), it is possible to use

1. EMF - Eclipse Modeling Framework SDK, and

2. Ecore Diagram Editor (SDK)

to create instances of arrangements on LLFSMs.
The following procedure shall set you up. It is based in the following tutorial

www.vogella.com/tutorials/EclipseEMF/article.html

1. Install Eclipse. We started using a version from 2019, and at the moment we are using 2022-03.
Follow standard instructions for this tasks.

2. Install in your Eclipse the two pieces mentioned before.

(a) EMF - Eclipse Modeling Framework SDK, and

(b) Ecore Diagram Editor (SDK)

This may require that you add the path to find them. In Eclipse, this means going to the Help tab
(usually rightmost) in the top bar, and when the menu drops, chose Install New Software. Then
a new panel will show and then, select Add. A further panel shows, and in location type

http://download.eclipse.org/releases/mars

Alternatively, the two SDKs above may also be in
https://download.eclipse.org/releases/latest

which you may find pressing the down-button in the field Work with:. Once the choosing panel with
Name and Version has some content, you open the inside of Modeling and select the two SDK’s.
Click all the Next and Finish buttons to install which may require you to relaunch Eclipse.

There are two ways you can get the standard editor of the ecore modeling frameowrk for building your
own models as ẋmi files. One way is use the already built Ecore Modelling Project (see Section 4.2) with
Eclipse (once the SDKs are installed). The second way means building the Ecore Modelling Project (see
Section 4.3). Both options needs the above SDKs installed and the file with the meta-model, namely the
file newGITmetamodelwithtypes.ecore.

To find this file, you will find that on executing the Docker image, your current directory is
/opt/Examples
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You will see that
ls ..

will show you that one level above you have the file
EclipseProjectWithMetaModelForLLFSMs.tar

Take this file to the shared directory with the host.
mv ../EclipseProjectWithMetaModelForLLFSMs.tar ../results

Now, you can use the host to unpack this file:
tar -xvf EclipseProjectWithMetaModelForLLFSMs.tar

in the results directory of the host and see the file structure of Figure 4.1 and where the file
newGITmetamodelwithtypes.ecore

is.

4.2 The supplied Ecore Modelling Project
The released Ecore Modelling Project provides the fewest number of files to release the meta-model of the
LLFSMs, and start it as a project inside a workspace for Elipse. In particular, the file newGITmetamodelwithtypes.genmodel
is not provided (see Section 4.3 from how to produce it).

After moving the tar file and unpacking, start Eclipse with the workspace pointing to inside the shared
directory results and in particular to the directory EclipseProjectWithMetaModelForLLFSMs. Currently
the project was created with Eclipse 2022-06. Older version of Eclipse will complain. See Section 4.3 to
build the project with an older version of Eclipse.

Once you do this a ".medata" directory will be created in the workspace. Never commit from here (too
large and ECLIPSE workspaces are not supposed to be on version control, only projects).

In Eclipse, use the “FILE” tab for a menu to drop down, and then select “Open project from file system”.
Click the “Directory” button, and then select and open the folder newGITmetamodelwithtypes. Click

“Finish” to close the dialog box.
In the package explorer panel of Eclipse (left most), you should see the project. You can then inspect

the content of the project, find the model subdirectory, and inside model you can find the meta-model:
the file newGITmetamodelwithtypes.ecore.

You can right-click this file and open it with Sample Ecore Model Editor; once opened, the edi-
tor panel of Eclipse shows the content. You can start opening the hierarchy until you find the class
Arrangement.

Right click in the class Arrangement to have a drop menu and select Create Dynamic Instance. You
are on your way to edit a LLFSM arrangement in a file of type .xmi with the name of your choice.

4.3 Building the Ecore Modelling Project
1. Make a new Ecore Modelling Project. You only have the Meta-Model in the file newGITmetamodelwithtypes.ecore.

In the earlier section you skip this step because you use the released Ecore Modelling Project. This
sections shows you how to build the Ecore Modelling Project. If you want to see screen shots of what
is to come, we recommend the part titled Create an Ecore Modeling Project from the following
link:

https://wiki.eclipse.org/Sirius/Tutorials/DomainModelTutorial

Simply, we now go to File in the top tabs (usually leftmost), the menu drops, and we chose
New, followed by Other. We use the wizard to open Ecore Modeling Framework and select Ecore
Modeling Project. It is important that you name your project newGITmetamodelwithtypes.
This is because once you click Finish, a file named newGITmetamodelwithtypes.ecore and oth-
ers will be created, one or two levels down from a directory named newGITmetamodelwithtypes in
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newGITmetamodelwithtypes
model

newGITmetamodelwithtypes.ecore
newGITmetamodelwithtypes.genmodel

Figure 4.1: The directory structure of the Ecore Modeling Project.

newGITmetamodelwithtypes
Arrangement
StateMachine

Figure 4.2: meta-model tree for arrangements of LLFSMs.

your chosen Eclipse workspace. Use the right-click in Eclipse to obtain a menu to delete the files
newGITmetamodelwithtypes.ecore and newGITmetamodelwithtypes.genmodel. Figure 4.1 shows
you the directory structure of the Ecore Modeling Project so you can locate these files. Exit
Eclipse and place our provided newGITmetamodelwithtypes.ecore where the deleted one was (you
may want to use directory exploration tools outside Eclipse to find the path of the one to delete so
you know where it is being replaced).

2. Regenerate newGITmetamodelwithtypes.genmodel. Since we deleted this one, we need to create it
from the meta-model in newGITmetamodelwithtypes.ecore. So right click on newGITmetamodelwithtypes.ecore
and chose New followed by Other and then under the Eclipse Modeling Framework select EMF
Generator Model and push the button Next. Accept the defaults by clicking Next again. About
two screen down you will see that the ecore Import is our newGITmetamodelwithtypes.ecore. Just
chose Load and Next. Then in the alst panel click Finish. You should have newGITmetamodelwithtypes.genmodel
restored. To check that it worked, but is not absolutely necessary, open it with the default. Then
in its tab in the editor you will see the root of the classes of the metamodel. Right-click and se-
lect Generate All. This generates java classes for out metamodel (which we included to build our
translators).

3. Build an arrangement of LLFSMs. Go back to the tab of newGITmetamodelwithtypes.ecore.
Open the tree of the meta-model. Figure 4.2 shows the tree of the meta-model. You can build parts of
LLFSMs, but if you want to translate them, run them and/or verify them as demonstrated in earlier
sections of this document, they must be in an Arrangement (even if it is only one machine. This,
right-click in Arrangement and half-way down the appearing menu you will see Create Dynamic
Instance. Select this and you will see you are about to edit a file of type .xmi as those we provided
in the examples. By default it comes as Arrangement.xmi but you can chose a different name.
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Chapter 5

Limitations

5.1 Data types
The data types implemented so far are Integer, Boolean and Set of Integer. Even for this types, not
all aspects of these types may be implemented. Particularly some Set of Integer operations may not be
implemented. Also for Set of Integer, some variables may not be implemented. For instance, effector
variables of type Set of Integer are still missing.

It is desirable to have arrays and sequences. That is, the type array of Integer would be desirable
to make more succinct LLFSMs for some of the schedulers, and handle all thread uniformly. Similarly,
variables of type sequence of Integer would be useful to represent protocols like Paxos. Arrays of integers
are functions with domain {0, 1, . . . , n} and range the integers, where the n is fixed. However, “sequences of
integers” are functions with domain {0, 1, . . . , n} and range the integers, but the n is not fixed, so operations
that append an element exist and enlarge the sequence by one. Sometimes “sequences of integers” are also
called “lists of integers”.

5.2 Translations
Not all models translate to TLA+. If an example does not mention the translation to TLA+, it is probably
that there are elements not implemented.
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